Study on Surface Roughness in Micro Milling of Single Crystal Materials

Q. Gao, P. Jin, G. Guo
{"title":"Study on Surface Roughness in Micro Milling of Single Crystal Materials","authors":"Q. Gao, P. Jin, G. Guo","doi":"10.33142/me.v1i1.656","DOIUrl":null,"url":null,"abstract":"Micro milling is a machining method of high precision and efficiency for micro components and features. In order to study the surface quality of single crystal materials in micro milling, the two-edged cemented carbide tool milling cutter with 0.4 mm diameter was used, and the orthogonal experiment was completed on the micro-milling of single crystal aluminum material. Through the analysis of statistical results, the primary and secondary factor which impacting on surface quality were found as follows: spindle speed, feed rate, milling depth. The ideal combination of optimized process parameters were obtained, when the spindle speed was 36000 r/min, the milling depth was 10 μm, the feed rate was 80 μm/s, which made the milling surface roughness is 0.782 μm and minimal. Single crystal materials removal mechanism were revealed, and the influence of cutting parameters on micro-milling surface were discussed, the reason of tool wear was analyzed. Those provide a certain theoretical and experimental basis for micro milling of single crystal materials.","PeriodicalId":16315,"journal":{"name":"Journal of Mechanical Engineering Science and Technology","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33142/me.v1i1.656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Micro milling is a machining method of high precision and efficiency for micro components and features. In order to study the surface quality of single crystal materials in micro milling, the two-edged cemented carbide tool milling cutter with 0.4 mm diameter was used, and the orthogonal experiment was completed on the micro-milling of single crystal aluminum material. Through the analysis of statistical results, the primary and secondary factor which impacting on surface quality were found as follows: spindle speed, feed rate, milling depth. The ideal combination of optimized process parameters were obtained, when the spindle speed was 36000 r/min, the milling depth was 10 μm, the feed rate was 80 μm/s, which made the milling surface roughness is 0.782 μm and minimal. Single crystal materials removal mechanism were revealed, and the influence of cutting parameters on micro-milling surface were discussed, the reason of tool wear was analyzed. Those provide a certain theoretical and experimental basis for micro milling of single crystal materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单晶材料微铣削表面粗糙度研究
微铣削是一种针对微部件和微特征的高精度、高效率的加工方法。为了研究微铣削单晶材料的表面质量,采用直径为0.4 mm的双刃硬质合金刀具铣刀,对单晶铝材料进行了微铣削正交试验。通过对统计结果的分析,发现影响表面质量的主次因素为主轴转速、进给速度、铣削深度。当主轴转速为36000 r/min,铣削深度为10 μm,进给速度为80 μm/s时,得到的铣削表面粗糙度最小,为0.782 μm。揭示了单晶材料的去除机理,探讨了切削参数对微铣削表面的影响,分析了刀具磨损的原因。为单晶材料的微铣削加工提供了一定的理论和实验依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
6
审稿时长
24 weeks
期刊最新文献
THE EFFECT OF TIME VARIATION ON CORROSION BEHAVIOR ASTM A36 IN SWAMP WATER FROM THE VILLAGE OF RAMBUTAN SOUTH SUMATRA PROVINCE, INDONESIA ANALYSIS AND MODELING OF WEIGHBRIDGE CONSTRUCTION REINFORCEMENT AT PT BUKIT ASAM FEASIBILITY OF 12 W SOLAR POWER PLANT FOR STREET LIGHTING IN RURAL AREA THE EFFECT OF TIME VARIATION ON CORROSION BEHAVIOUR OF ASTM A36 IN SEAWATER FROM WEST BANGKA OF BANGKA BELITUNG ISLANDS, INDONESIA SUMMARY OF AUTOMATION, PRODUCTION SYSTEMS, AND COMPUTER-INTEGRATED MANUFACTURING FOURTH EDITION BY MIKELL P. GROOVER
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1