Accelerating Irregular Algorithms on GPGPUs Using Fine-Grain Hardware Worklists

J. Kim, C. Batten
{"title":"Accelerating Irregular Algorithms on GPGPUs Using Fine-Grain Hardware Worklists","authors":"J. Kim, C. Batten","doi":"10.1109/MICRO.2014.24","DOIUrl":null,"url":null,"abstract":"Although GPGPUs are traditionally used to accelerate workloads with regular control and memory-access structure, recent work has shown that GPGPUs can also achieve significant speedups on more irregular algorithms. Data-driven implementations of irregular algorithms are algorithmically more efficient than topology-driven implementations, but issues with memory contention and memory-access irregularity can make the former perform worse in certain cases. In this paper, we propose a novel fine-grain hardware work list for GPGPUs that addresses the weaknesses of data-driven implementations. We detail multiple work redistribution schemes of varying complexity that can be employed to improve load balancing. Furthermore, a virtualization mechanism supports seamless work spilling to memory. A convenient shared work list software API is provided to simplify using our proposed mechanisms when implementing irregular algorithms. We evaluate challenging irregular algorithms from the Lonestar GPU benchmark suite on a cycle-level simulator. Our findings show that data-driven implementations running on a GPGPU using the hardware work list outperform highly optimized software-based implementations of these benchmarks running on a baseline GPGPU with speedups ranging from 1.2 - 2.4× and marginal area overhead.","PeriodicalId":6591,"journal":{"name":"2014 47th Annual IEEE/ACM International Symposium on Microarchitecture","volume":"6 1","pages":"75-87"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 47th Annual IEEE/ACM International Symposium on Microarchitecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICRO.2014.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

Although GPGPUs are traditionally used to accelerate workloads with regular control and memory-access structure, recent work has shown that GPGPUs can also achieve significant speedups on more irregular algorithms. Data-driven implementations of irregular algorithms are algorithmically more efficient than topology-driven implementations, but issues with memory contention and memory-access irregularity can make the former perform worse in certain cases. In this paper, we propose a novel fine-grain hardware work list for GPGPUs that addresses the weaknesses of data-driven implementations. We detail multiple work redistribution schemes of varying complexity that can be employed to improve load balancing. Furthermore, a virtualization mechanism supports seamless work spilling to memory. A convenient shared work list software API is provided to simplify using our proposed mechanisms when implementing irregular algorithms. We evaluate challenging irregular algorithms from the Lonestar GPU benchmark suite on a cycle-level simulator. Our findings show that data-driven implementations running on a GPGPU using the hardware work list outperform highly optimized software-based implementations of these benchmarks running on a baseline GPGPU with speedups ranging from 1.2 - 2.4× and marginal area overhead.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用细粒度硬件工作列表加速gpgpu上的不规则算法
虽然gpgpu传统上用于加速具有常规控制和内存访问结构的工作负载,但最近的研究表明,gpgpu也可以在更不规则的算法上实现显着的加速。不规则算法的数据驱动实现在算法上比拓扑驱动实现更高效,但是内存争用和内存访问不规则的问题在某些情况下会使前者的性能更差。在本文中,我们为gpgpu提出了一种新的细粒度硬件工作列表,以解决数据驱动实现的弱点。我们详细介绍了可用于改善负载平衡的不同复杂性的多个工作再分配方案。此外,虚拟化机制支持无缝地将工作溢出到内存。提供了一个方便的共享工作列表软件API,以便在实现不规则算法时简化使用我们提出的机制。我们在周期级模拟器上评估来自龙星GPU基准套件的具有挑战性的不规则算法。我们的研究结果表明,在使用硬件工作列表的GPGPU上运行的数据驱动实现比在基线GPGPU上运行的这些基准测试的高度优化的基于软件的实现性能更好,速度范围从1.2 - 2.4倍不等,面积开销很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Specializing Compiler Optimizations through Programmable Composition for Dense Matrix Computations Efficient Memory Virtualization: Reducing Dimensionality of Nested Page Walks SMiTe: Precise QoS Prediction on Real-System SMT Processors to Improve Utilization in Warehouse Scale Computers Equalizer: Dynamic Tuning of GPU Resources for Efficient Execution Harnessing Soft Computations for Low-Budget Fault Tolerance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1