Audio Encryption Framework Using the Laplace Transformation

IF 1.2 Q3 MULTIDISCIPLINARY SCIENCES ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY Pub Date : 2023-08-25 DOI:10.14500/aro.11165
Mardan A. Pirdawood, Shadman R. Kareem, Dashne Ch. Zahir
{"title":"Audio Encryption Framework Using the Laplace Transformation","authors":"Mardan A. Pirdawood, Shadman R. Kareem, Dashne Ch. Zahir","doi":"10.14500/aro.11165","DOIUrl":null,"url":null,"abstract":"Digital information, especially multimedia and its applications, has grown exponentially in recent years. It is important to strengthen sophisticated encryption algorithms due to the security needs of these innovative systems. The security of real-time audio applications is ensured in the present study through a framework for encryption. The design framework protects the confidentiality and integrity of voice communications by encrypting audio applications. A modern method of securing communication and protecting data is cryptography. Using cryptography is one of the most important techniques for protecting data and ensuring the security of messaging. The main purpose of this paper is to present a novel encryption scheme that can be used in real-time audio applications. We encrypt the sound using a combination of an infinite series of hyperbolic functions and the Laplace transform, and then decrypt it using the inverse Laplace transform. The modular arithmetic rules are used to generate the key for the coefficients acquired from the transformation. There is no loss of data or noise in the decryption sound. We also put several sound examples to the test","PeriodicalId":8398,"journal":{"name":"ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14500/aro.11165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Digital information, especially multimedia and its applications, has grown exponentially in recent years. It is important to strengthen sophisticated encryption algorithms due to the security needs of these innovative systems. The security of real-time audio applications is ensured in the present study through a framework for encryption. The design framework protects the confidentiality and integrity of voice communications by encrypting audio applications. A modern method of securing communication and protecting data is cryptography. Using cryptography is one of the most important techniques for protecting data and ensuring the security of messaging. The main purpose of this paper is to present a novel encryption scheme that can be used in real-time audio applications. We encrypt the sound using a combination of an infinite series of hyperbolic functions and the Laplace transform, and then decrypt it using the inverse Laplace transform. The modular arithmetic rules are used to generate the key for the coefficients acquired from the transformation. There is no loss of data or noise in the decryption sound. We also put several sound examples to the test
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于拉普拉斯变换的音频加密框架
数字信息,特别是多媒体及其应用,近年来呈指数级增长。由于这些创新系统的安全需求,加强复杂的加密算法非常重要。本研究通过一个加密框架来保证实时音频应用的安全性。该设计框架通过对音频应用程序进行加密来保护语音通信的机密性和完整性。保护通信和保护数据的现代方法是密码学。使用加密技术是保护数据和确保消息传递安全性的最重要技术之一。本文的主要目的是提出一种可用于实时音频应用的新型加密方案。我们用无穷级数的双曲函数和拉普拉斯变换的组合来加密声音,然后用拉普拉斯逆变换来解密。利用模算术规则生成由变换得到的系数的键。在解密声音中没有数据丢失或噪声。我们还用了几个不错的例子来测试
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY
ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY MULTIDISCIPLINARY SCIENCES-
自引率
33.30%
发文量
33
审稿时长
16 weeks
期刊最新文献
Encryption of Color Images with a New Framework Microstrip Passive Components for Energy Harvesting and 5G Applications Optimizing Emotional Insight through Unimodal and Multimodal Long Short-term Memory Models A Review on Adverse Drug Reaction Detection Techniques Deep Learning-Based Optical Music Recognition for Semantic Representation of Non-overlap and Overlap Music Notes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1