NDRank: optimised parallel search for weather analogues

IF 4.2 3区 地球科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Big Earth Data Pub Date : 2023-03-31 DOI:10.1080/20964471.2023.2195468
D. Martins, Miguel Ferreira, João Nuno Silva
{"title":"NDRank: optimised parallel search for weather analogues","authors":"D. Martins, Miguel Ferreira, João Nuno Silva","doi":"10.1080/20964471.2023.2195468","DOIUrl":null,"url":null,"abstract":"ABSTRACT Global meteorology data are now widely used in various areas, but one of its applications, weather analogues, still require exhaustive searches on the whole historical data. We present two optimisations for the state-of-the-art weather analogue search algorithms: a parallelization and a heuristic search. The heuristic search (NDRank) limits of the final number of results and does initial searches on a lower resolution dataset to find candidates that, in the second phase, are locally validated. These optimisations were deployed in the Cloud and evaluated with ERA5 data from ECMWF. The proposed parallelization attained speedups close to optimal, and NDRank attains speedups higher than 4. NDRank can be applied to any parallel search, adding similar speedups. A substantial number of executions returned a set of analogues similar to the existing exhaustive search and most of the remaining results presented a numerical value difference lower than 0.1%. The results demonstrate that it is now possible to search for weather analogues in a faster way (even compared with parallel searches) with results with little to no error. Furthermore, NDRank can be applied to existing exhaustive searches, providing faster results with small reduction of the precision of the results.","PeriodicalId":8765,"journal":{"name":"Big Earth Data","volume":"55 1","pages":"276 - 297"},"PeriodicalIF":4.2000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Earth Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/20964471.2023.2195468","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Global meteorology data are now widely used in various areas, but one of its applications, weather analogues, still require exhaustive searches on the whole historical data. We present two optimisations for the state-of-the-art weather analogue search algorithms: a parallelization and a heuristic search. The heuristic search (NDRank) limits of the final number of results and does initial searches on a lower resolution dataset to find candidates that, in the second phase, are locally validated. These optimisations were deployed in the Cloud and evaluated with ERA5 data from ECMWF. The proposed parallelization attained speedups close to optimal, and NDRank attains speedups higher than 4. NDRank can be applied to any parallel search, adding similar speedups. A substantial number of executions returned a set of analogues similar to the existing exhaustive search and most of the remaining results presented a numerical value difference lower than 0.1%. The results demonstrate that it is now possible to search for weather analogues in a faster way (even compared with parallel searches) with results with little to no error. Furthermore, NDRank can be applied to existing exhaustive searches, providing faster results with small reduction of the precision of the results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ndrink:优化了天气模拟的并行搜索
全球气象数据目前被广泛应用于各个领域,但其应用之一——天气模拟,仍然需要对整个历史数据进行穷尽搜索。我们提出了两种优化的最先进的天气模拟搜索算法:并行化和启发式搜索。启发式搜索(ndrunk)限制了最终结果的数量,并在较低分辨率的数据集上进行初始搜索,以找到在第二阶段经过本地验证的候选数据。这些优化部署在云中,并使用ECMWF的ERA5数据进行评估。所提出的并行化获得了接近最优的加速,ndrink获得了高于4的加速。ndrink可以应用于任何并行搜索,增加类似的速度。大量的执行返回一组类似于现有穷举搜索的类似物,并且大多数剩余结果的数值差异小于0.1%。结果表明,现在可以以更快的方式搜索天气类似物(甚至与并行搜索相比),结果几乎没有错误。此外,ndrink可以应用于现有的穷举搜索,提供更快的结果,而结果的精度降低很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Big Earth Data
Big Earth Data Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
7.40
自引率
10.00%
发文量
60
审稿时长
10 weeks
期刊最新文献
A dataset of lake level changes in China between 2002 and 2023 using multi-altimeter data The first 10 m resolution thermokarst lake and pond dataset for the Lena Basin in the 2020 thawing season A high-resolution dataset for lower atmospheric process studies over the Tibetan Plateau from 1981 to 2020 An application of 1D convolution and deep learning to remote sensing modelling of Secchi depth in the northern Adriatic Sea A mediation system for continuous spatial queries on a unified schema using Apache Spark
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1