AT-GIS: Highly Parallel Spatial Query Processing with Associative Transducers

Peter Ogden, David B. Thomas, P. Pietzuch
{"title":"AT-GIS: Highly Parallel Spatial Query Processing with Associative Transducers","authors":"Peter Ogden, David B. Thomas, P. Pietzuch","doi":"10.1145/2882903.2882962","DOIUrl":null,"url":null,"abstract":"Users in many domains, including urban planning, transportation, and environmental science want to execute analytical queries over continuously updated spatial datasets. Current solutions for large-scale spatial query processing either rely on extensions to RDBMS, which entails expensive loading and indexing phases when the data changes, or distributed map/reduce frameworks, running on resource-hungry compute clusters. Both solutions struggle with the sequential bottleneck of parsing complex, hierarchical spatial data formats, which frequently dominates query execution time. Our goal is to fully exploit the parallelism offered by modern multi-core CPUs for parsing and query execution, thus providing the performance of a cluster with the resources of a single machine. We describe AT-GIS, a highly-parallel spatial query processing system that scales linearly to a large number of CPU cores. AT-GIS integrates the parsing and querying of spatial data using a new computational abstraction called associative transducers (ATs). ATs can form a single data-parallel pipeline for computation without requiring the spatial input data to be split into logically independent blocks. Using ATs, AT-GIS can execute, in parallel, spatial query operators on the raw input data in multiple formats, without any pre-processing. On a single 64-core machine, AT-GIT provides 3x the performance of an 8-node Hadoop cluster with 192 cores for containment queries, and 10x for aggregation queries.","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2882962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Users in many domains, including urban planning, transportation, and environmental science want to execute analytical queries over continuously updated spatial datasets. Current solutions for large-scale spatial query processing either rely on extensions to RDBMS, which entails expensive loading and indexing phases when the data changes, or distributed map/reduce frameworks, running on resource-hungry compute clusters. Both solutions struggle with the sequential bottleneck of parsing complex, hierarchical spatial data formats, which frequently dominates query execution time. Our goal is to fully exploit the parallelism offered by modern multi-core CPUs for parsing and query execution, thus providing the performance of a cluster with the resources of a single machine. We describe AT-GIS, a highly-parallel spatial query processing system that scales linearly to a large number of CPU cores. AT-GIS integrates the parsing and querying of spatial data using a new computational abstraction called associative transducers (ATs). ATs can form a single data-parallel pipeline for computation without requiring the spatial input data to be split into logically independent blocks. Using ATs, AT-GIS can execute, in parallel, spatial query operators on the raw input data in multiple formats, without any pre-processing. On a single 64-core machine, AT-GIT provides 3x the performance of an 8-node Hadoop cluster with 192 cores for containment queries, and 10x for aggregation queries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于关联传感器的高度并行空间查询处理
包括城市规划、交通和环境科学在内的许多领域的用户都希望对不断更新的空间数据集执行分析查询。当前用于大规模空间查询处理的解决方案要么依赖于RDBMS的扩展,这需要在数据更改时进行昂贵的加载和索引阶段,要么依赖于运行在资源匮乏的计算集群上的分布式map/reduce框架。这两种解决方案都要克服解析复杂的、分层的空间数据格式的顺序瓶颈,这通常会影响查询的执行时间。我们的目标是充分利用现代多核cpu为解析和查询执行提供的并行性,从而用单个机器的资源提供集群的性能。我们描述了AT-GIS,一个高度并行的空间查询处理系统,线性扩展到大量的CPU内核。AT-GIS使用一种新的称为关联传感器(ATs)的计算抽象集成了空间数据的解析和查询。at可以形成一个单一的数据并行管道进行计算,而不需要将空间输入数据分割成逻辑独立的块。使用ATs, AT-GIS可以并行地对多种格式的原始输入数据执行空间查询运算符,而无需进行任何预处理。在单个64核机器上,AT-GIT提供的性能是8节点192核Hadoop集群的3倍,是聚合查询的10倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Experimental Comparison of Thirteen Relational Equi-Joins in Main Memory Rheem: Enabling Multi-Platform Task Execution Wander Join: Online Aggregation for Joins Graph Summarization for Geo-correlated Trends Detection in Social Networks Emma in Action: Declarative Dataflows for Scalable Data Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1