An analysis of the operation of differential evolution at high and low crossover rates

James Montgomery, Stephen Y. Chen
{"title":"An analysis of the operation of differential evolution at high and low crossover rates","authors":"James Montgomery, Stephen Y. Chen","doi":"10.1109/CEC.2010.5586128","DOIUrl":null,"url":null,"abstract":"A key parameter affecting the operation of differential evolution (DE) is the crossover rate Cr ∊ [0, 1]. While very low values are recommended for and used with separable problems, on non-separable problems, which include most real-world problems, Cr = 0.9 has become the de facto standard, working well across a large range of problem domains. Recent work on separable and non-separable problems has shown that lower-dimensional searches can play an important role in the performance of search techniques in higher-dimensional search spaces. However, the standard value of Cr = 0.9 implies a very high-dimensional search, which is not effective for other search techniques. An analysis of Cr across its range [0, 1] provides insight into how its value affects the performance of DE and suggests how low values may be used to improve the performance of DE. This new understanding of the operation of DE at high and low crossover rates is useful for analysing how adaptive parameters affect DE performance and leads to new suggestions for how adaptive DE techniques might be developed.","PeriodicalId":6344,"journal":{"name":"2009 IEEE Congress on Evolutionary Computation","volume":"10 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2010.5586128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

Abstract

A key parameter affecting the operation of differential evolution (DE) is the crossover rate Cr ∊ [0, 1]. While very low values are recommended for and used with separable problems, on non-separable problems, which include most real-world problems, Cr = 0.9 has become the de facto standard, working well across a large range of problem domains. Recent work on separable and non-separable problems has shown that lower-dimensional searches can play an important role in the performance of search techniques in higher-dimensional search spaces. However, the standard value of Cr = 0.9 implies a very high-dimensional search, which is not effective for other search techniques. An analysis of Cr across its range [0, 1] provides insight into how its value affects the performance of DE and suggests how low values may be used to improve the performance of DE. This new understanding of the operation of DE at high and low crossover rates is useful for analysing how adaptive parameters affect DE performance and leads to new suggestions for how adaptive DE techniques might be developed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高交叉率和低交叉率下差分演化操作的分析
影响差分演化(DE)运行的一个关键参数是交叉率Cr =[0,1]。对于可分离问题,建议使用非常低的值,而对于不可分离问题(包括大多数现实世界的问题),Cr = 0.9已经成为事实上的标准,可以在很大范围的问题领域中很好地工作。最近关于可分和不可分问题的研究表明,低维搜索可以在高维搜索空间的搜索技术性能中发挥重要作用。但是,Cr = 0.9的标准值意味着非常高维的搜索,这对于其他搜索技术来说是无效的。对Cr在其范围内的分析[0,1]可以深入了解其值如何影响DE的性能,并建议如何使用低值来提高DE的性能。这种对高交叉率和低交叉率下DE操作的新理解有助于分析自适应参数如何影响DE性能,并为如何开发自适应DE技术提供新的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Step-Size Individualization: a Case Study for The Fish School Search Family A Genetic Ant Colony Optimization Algorithm for Inter-domain Path Computation problem under the Domain Uniqueness constraint A Simulated IMO-DRSA Approach for Cognitive Reduction in Multiobjective Financial Portfolio Interactive Optimization Applying Never-Ending Learning (NEL) Principles to Build a Gene Ontology (GO) Biocurator Many Layer Transfer Learning Genetic Algorithm (MLTLGA): a New Evolutionary Transfer Learning Approach Applied To Pneumonia Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1