Multi-Domain Conversions of High Dimensional Channel Characteristics for Massive MIMO-OFDM

G. Yue, Xiao-Feng Qi
{"title":"Multi-Domain Conversions of High Dimensional Channel Characteristics for Massive MIMO-OFDM","authors":"G. Yue, Xiao-Feng Qi","doi":"10.1109/GLOBECOM42002.2020.9348039","DOIUrl":null,"url":null,"abstract":"In this paper, we first define a high dimensional (HiDi) channel characteristics, i.e., space-frequency covariance, for wideband MIMO-OFDM systems. We then design the conversion of the HiDi covariance in frequency domain from one carrier frequency to another, e.g., for FDD systems. Specifically, we apply the projection method in a Hilbert space to estimate the power angle delay spectrum and form the frequency domain conversion of the space-frequency covariance. We also obtain the asymptotic solutions when considering the infinite delay spread, which significantly reduces the complexity. Moreover, we generalize the conversions of space-frequency covariance in both spatial and frequency domains with two exemplary multi-panel scenarios. We then apply the general solutions to a specific antenna array configuration, i.e., uniform linear array (ULA), and obtain the explicit expressions of conversions. Numerical simulations demonstrate the efficiency of the designed conversions.","PeriodicalId":12759,"journal":{"name":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM42002.2020.9348039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we first define a high dimensional (HiDi) channel characteristics, i.e., space-frequency covariance, for wideband MIMO-OFDM systems. We then design the conversion of the HiDi covariance in frequency domain from one carrier frequency to another, e.g., for FDD systems. Specifically, we apply the projection method in a Hilbert space to estimate the power angle delay spectrum and form the frequency domain conversion of the space-frequency covariance. We also obtain the asymptotic solutions when considering the infinite delay spread, which significantly reduces the complexity. Moreover, we generalize the conversions of space-frequency covariance in both spatial and frequency domains with two exemplary multi-panel scenarios. We then apply the general solutions to a specific antenna array configuration, i.e., uniform linear array (ULA), and obtain the explicit expressions of conversions. Numerical simulations demonstrate the efficiency of the designed conversions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模MIMO-OFDM中高维信道特性的多域转换
在本文中,我们首先定义了宽带MIMO-OFDM系统的高维(HiDi)信道特性,即空频协方差。然后,我们设计了在频域中从一个载波频率到另一个载波频率的HiDi协方差转换,例如,用于FDD系统。具体来说,我们利用希尔伯特空间中的投影法估计功率角延迟谱,形成空频协方差的频域变换。在考虑无限延迟扩展的情况下,我们也得到了渐近解,大大降低了复杂度。此外,我们用两个示例性的多面板场景在空间和频率域推广了空频协方差的转换。然后,我们将一般解应用于特定的天线阵列配置,即均匀线性阵列(ULA),并获得转换的显式表达式。数值模拟验证了所设计的转换的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AirID: Injecting a Custom RF Fingerprint for Enhanced UAV Identification using Deep Learning Oversampling Algorithm based on Reinforcement Learning in Imbalanced Problems FAST-RAM: A Fast AI-assistant Solution for Task Offloading and Resource Allocation in MEC Achieving Privacy-Preserving Vehicle Selection for Effective Content Dissemination in Smart Cities Age-optimal Transmission Policy for Markov Source with Differential Encoding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1