Speech recognition features based on deep latent Gaussian models

Andros Tjandra, S. Sakti, Satoshi Nakamura
{"title":"Speech recognition features based on deep latent Gaussian models","authors":"Andros Tjandra, S. Sakti, Satoshi Nakamura","doi":"10.1109/MLSP.2017.8168174","DOIUrl":null,"url":null,"abstract":"This paper constructs speech features based on a generative model using a deep latent Gaussian model (DLGM), which is trained using stochastic gradient variational Bayes (SGVB) algorithm and performs efficient approximate inference and learning with a directed probabilistic graphical model. The trained DLGM then generate latent variables based on Gaussian distribution, which is used as new features for a deep neural network (DNN) acoustic model. Here we compare our results with and without features transformed by DLGM and also observe the benefits of combining both the proposed and original features into a single DNN. Our experimental results show that the proposed features using DLGM improved the ASR performance. Furthermore, the DNN acoustic model, which combined the proposed and original features, gave the best performances.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"54 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper constructs speech features based on a generative model using a deep latent Gaussian model (DLGM), which is trained using stochastic gradient variational Bayes (SGVB) algorithm and performs efficient approximate inference and learning with a directed probabilistic graphical model. The trained DLGM then generate latent variables based on Gaussian distribution, which is used as new features for a deep neural network (DNN) acoustic model. Here we compare our results with and without features transformed by DLGM and also observe the benefits of combining both the proposed and original features into a single DNN. Our experimental results show that the proposed features using DLGM improved the ASR performance. Furthermore, the DNN acoustic model, which combined the proposed and original features, gave the best performances.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深隐高斯模型的语音识别特征
本文利用深隐高斯模型(DLGM)构建基于生成模型的语音特征,该模型使用随机梯度变分贝叶斯(SGVB)算法进行训练,并使用有向概率图模型进行有效的近似推理和学习。训练后的DLGM生成基于高斯分布的潜在变量,作为深度神经网络声学模型的新特征。在这里,我们比较了经过DLGM转换的特征和没有经过DLGM转换的特征的结果,并观察了将提出的特征和原始特征结合到单个DNN中的好处。我们的实验结果表明,使用DLGM提出的特征提高了ASR性能。此外,将所提特征与原始特征相结合的深度神经网络声学模型表现最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classical quadrature rules via Gaussian processes Does speech enhancement work with end-to-end ASR objectives?: Experimental analysis of multichannel end-to-end ASR Differential mutual information forward search for multi-kernel discriminant-component selection with an application to privacy-preserving classification Partitioning in signal processing using the object migration automaton and the pursuit paradigm Inferring room semantics using acoustic monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1