Query prediction with context models for populating personal linked data caches

O. Hartig, T. Heath
{"title":"Query prediction with context models for populating personal linked data caches","authors":"O. Hartig, T. Heath","doi":"10.1145/2309996.2310056","DOIUrl":null,"url":null,"abstract":"The emergence of a Web of Linked Data [2] enables new forms of application that require expressive query access, for which mature, Web-scale information retrieval techniques may not be suited. Rather than attempting to deliver expressive query capabilities at Web-scale, we propose the use of smaller, pre-populated data caches whose contents are personalized to the needs of an individual user. Such caches can act as personal data stores supporting a range of different applications. Furthermore, we discuss a user evaluation which demonstrates that our approach can accurately predict queries and their execution probability, thereby optimizing the cache population process. In this paper we formally introduce a strategy for predicting queries that can then be used to inform an a priori population of a personal cache of Linked Data harvested from Web. Based on a comprehensive user evaluation we demonstrate that our approach can accurately predict queries and their execution probability, thereby optimizing the cache population process.","PeriodicalId":91270,"journal":{"name":"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media","volume":"203 1","pages":"325-326"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2309996.2310056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of a Web of Linked Data [2] enables new forms of application that require expressive query access, for which mature, Web-scale information retrieval techniques may not be suited. Rather than attempting to deliver expressive query capabilities at Web-scale, we propose the use of smaller, pre-populated data caches whose contents are personalized to the needs of an individual user. Such caches can act as personal data stores supporting a range of different applications. Furthermore, we discuss a user evaluation which demonstrates that our approach can accurately predict queries and their execution probability, thereby optimizing the cache population process. In this paper we formally introduce a strategy for predicting queries that can then be used to inform an a priori population of a personal cache of Linked Data harvested from Web. Based on a comprehensive user evaluation we demonstrate that our approach can accurately predict queries and their execution probability, thereby optimizing the cache population process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用上下文模型进行查询预测,用于填充个人链接数据缓存
关联数据网络[2]的出现使需要表达性查询访问的新形式的应用程序成为可能,而成熟的、网络规模的信息检索技术可能不适合这些应用程序。我们建议使用较小的、预先填充的数据缓存,其内容根据单个用户的需要进行个性化处理,而不是试图在web规模上提供富有表现力的查询功能。这些缓存可以作为支持一系列不同应用程序的个人数据存储。此外,我们讨论了一个用户评估,该评估表明我们的方法可以准确地预测查询及其执行概率,从而优化缓存填充过程。在本文中,我们正式介绍了一种预测查询的策略,该策略可用于通知从Web获取的个人关联数据缓存的先验人群。基于全面的用户评估,我们证明了我们的方法可以准确地预测查询及其执行概率,从而优化缓存填充过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HT '22: 33rd ACM Conference on Hypertext and Social Media, Barcelona, Spain, 28 June 2022- 1 July 2022 HT '21: 32nd ACM Conference on Hypertext and Social Media, Virtual Event, Ireland, 30 August 2021 - 2 September 2021 HT '20: 31st ACM Conference on Hypertext and Social Media, Virtual Event, USA, July 13-15, 2020 Detecting Changes in Suicide Content Manifested in Social Media Following Celebrity Suicides. QualityRank: assessing quality of wikipedia articles by mutually evaluating editors and texts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1