Probabilistic Forecasting Methods of Winter Mixed Precipitation Events in New York State Utilizing a Random Forest

Brian C. Filipiak, N. Bassill, Kristen Corbosiero, A. Lang, Ross A. Lazear
{"title":"Probabilistic Forecasting Methods of Winter Mixed Precipitation Events in New York State Utilizing a Random Forest","authors":"Brian C. Filipiak, N. Bassill, Kristen Corbosiero, A. Lang, Ross A. Lazear","doi":"10.1175/aies-d-22-0080.1","DOIUrl":null,"url":null,"abstract":"\nWinter mixed precipitation events are associated with multiple hazards and create forecast challenges due to the difficulty in determining the timing and amount of each precipitation type. In New York State, complex terrain enhances these forecast challenges. Machine learning is a relatively nascent tool that can help improve forecasting by synthesizing large amounts of data and finding underlying relationships. This study uses a random forest machine learning algorithm that generates probabilistic winter precipitation type forecasts. Random forest configuration, testing, and development methods are presented to show how this tool can be applied to operational forecasting. Dataset generation and variation are also explained due to their essential nature in the random forest. Lastly, the methodology of transitioning a machine learning algorithm from research to operations is discussed.","PeriodicalId":94369,"journal":{"name":"Artificial intelligence for the earth systems","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence for the earth systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/aies-d-22-0080.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Winter mixed precipitation events are associated with multiple hazards and create forecast challenges due to the difficulty in determining the timing and amount of each precipitation type. In New York State, complex terrain enhances these forecast challenges. Machine learning is a relatively nascent tool that can help improve forecasting by synthesizing large amounts of data and finding underlying relationships. This study uses a random forest machine learning algorithm that generates probabilistic winter precipitation type forecasts. Random forest configuration, testing, and development methods are presented to show how this tool can be applied to operational forecasting. Dataset generation and variation are also explained due to their essential nature in the random forest. Lastly, the methodology of transitioning a machine learning algorithm from research to operations is discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机森林的纽约州冬季混合降水事件概率预测方法
冬季混合降水事件与多种灾害有关,由于难以确定每种降水类型的时间和数量,因此给预报带来了挑战。在纽约州,复杂的地形增加了这些预测的挑战。机器学习是一种相对新兴的工具,它可以通过综合大量数据和发现潜在关系来帮助改进预测。本研究使用随机森林机器学习算法生成概率冬季降水类型预测。随机森林配置、测试和开发方法展示了如何将此工具应用于操作预测。由于数据集的生成和变化在随机森林中的本质,也解释了它们的生成和变化。最后,讨论了机器学习算法从研究到操作的过渡方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transferability and explainability of deep learning emulators for regional climate model projections: Perspectives for future applications Classification of ice particle shapes using machine learning on forward light scattering images Convolutional encoding and normalizing flows: a deep learning approach for offshore wind speed probabilistic forecasting in the Mediterranean Sea Neural networks to find the optimal forcing for offsetting the anthropogenic climate change effects Machine Learning Approach for Spatiotemporal Multivariate Optimization of Environmental Monitoring Sensor Locations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1