On quasi-tranferable molecular fragments. Part IV. Bond energies and bond dissociation: Novel approaches and comparisons with classical results

Sándor Fliszár , Édouard C. Vauthier
{"title":"On quasi-tranferable molecular fragments. Part IV. Bond energies and bond dissociation: Novel approaches and comparisons with classical results","authors":"Sándor Fliszár ,&nbsp;Édouard C. Vauthier","doi":"10.1016/j.theochem.2010.09.008","DOIUrl":null,"url":null,"abstract":"<div><p>Results given by the new formula for the standard perfect-gas enthalpy of formation, <span><math><mrow><mi>Δ</mi><msubsup><mrow><mi>H</mi></mrow><mrow><mtext>f</mtext></mrow><mrow><mo>∘</mo></mrow></msubsup><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mtext>K</mtext></mrow></msub><mi>F</mi><mo>(</mo><mtext>K</mtext><mo>)</mo><mo>+</mo><mtext>ZPE</mtext><mo>+</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>-</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>-</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>&lt;</mo><mi>l</mi></mrow></msub><msub><mrow><mi>ε</mi></mrow><mrow><mi>kl</mi></mrow></msub><mo>-</mo><mo>(</mo><mtext>CNE</mtext><mo>-</mo><msub><mrow><mi>E</mi></mrow><mrow><mtext>nb</mtext></mrow></msub><mo>)</mo></mrow></math></span>, are compared with experiment. <span><math><mrow><mi>F</mi><mo>(</mo><mtext>K</mtext><mo>)</mo><mtext>,</mtext><mi>F</mi><mo>(</mo><mtext>L</mtext><mo>)</mo><mtext>,</mtext><mo>…</mo></mrow></math></span> are fixed parameters of chemical groups K, L, etc. and <span><math><mrow><msub><mrow><mi>ε</mi></mrow><mrow><mi>kl</mi></mrow></msub></mrow></math></span> is the intrinsic energy of the link between K and L. <span><math><mrow><mi>Z</mi><mo>=</mo><mtext>ZPE</mtext><mo>+</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>-</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> is the familiar sum of zero-point<!--> <!-->+<!--> <!-->heat-content energies and CNE accounts for the fact that the fragments K, L, etc. are not individually electroneutral in their host molecule. <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mtext>nb</mtext></mrow></msub></mrow></math></span> stands for nonbonded interactions between the fragments. The reduction of the 3-fragment formula applicable to molecules written K-[CH(X)]-L to get its equivalent for the 2-fragment form [CHK(X)]-L reveals a most useful relationship between the functions <span><math><mrow><mi>F</mi></mrow></math></span>[CH(X)] and <span><math><mrow><mi>F</mi></mrow></math></span>[<span><math><mrow><msub><mrow><mtext>CH</mtext></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>(X)]: the latter is usually easy to obtain, but it is <span><math><mrow><mi>F</mi></mrow></math></span>[CH(X)] that is actually required in the 3-fragment problem K-[CH(X)]-L. Fragments of this form, already known for <span><math><mrow><mtext>X</mtext><mo>=</mo><msub><mrow><mtext>CH</mtext></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span>, were successfully tested for <span><math><mrow><mtext>X</mtext><mo>=</mo><msub><mrow><mtext>C</mtext></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mtext>H</mtext></mrow><mrow><mn>5</mn></mrow></msub><mtext>,</mtext><mi>n</mi><mo>-</mo><msub><mrow><mtext>C</mtext></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mtext>H</mtext></mrow><mrow><mn>7</mn></mrow></msub><mtext>,</mtext><msub><mrow><mtext>C</mtext></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mtext>H</mtext></mrow><mrow><mn>5</mn></mrow></msub><mtext>,CH</mtext><mo>=</mo><msub><mrow><mtext>CH</mtext></mrow><mrow><mn>2</mn></mrow></msub><mspace></mspace><mtext>and</mtext><mspace></mspace><mtext>C</mtext><mo>(</mo><msub><mrow><mtext>CH</mtext></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo><mtext><mglyph></mglyph></mtext><msub><mrow><mtext>CH</mtext></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>; moreover, fragments of the form C(X,Y) with <span><math><mrow><mtext>X</mtext><mo>=</mo><msub><mrow><mtext>CH</mtext></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> and <span><math><mrow><mtext>Y</mtext><mo>=</mo><msub><mrow><mtext>CH</mtext></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span>, <span><math><mrow><msub><mrow><mtext>C</mtext></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mtext>H</mtext></mrow><mrow><mn>5</mn></mrow></msub></mrow></math></span>, <span><math><mrow><mi>n</mi><mtext>-</mtext><msub><mrow><mtext>C</mtext></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mtext>H</mtext></mrow><mrow><mn>7</mn></mrow></msub></mrow></math></span> or <span><math><mrow><mtext><mtext>CH</mtext><mglyph></mglyph></mtext><msub><mrow><mtext>CH</mtext></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> were also shown to satisfy the master equation for<span><math><mrow><mi>Δ</mi><msubsup><mrow><mi>H</mi></mrow><mrow><mtext>f</mtext></mrow><mrow><mo>∘</mo></mrow></msubsup></mrow></math></span>. The formula derived for CX bonds, <span><math><mrow><msub><mrow><mi>ε</mi></mrow><mrow><mtext>CX</mtext></mrow></msub><mo>+</mo><mtext>CNE</mtext><mo>=</mo><mi>F</mi><mo>[</mo><mtext>X</mtext><mo>]</mo><mo>+</mo><mi>F</mi><mo>[</mo><mtext>CH(X)</mtext><mo>]</mo><mo>-</mo><mi>F</mi><mo>[</mo><mtext>CHK(X)</mtext><mo>]</mo></mrow></math></span> (where X<!--> <!-->=<!--> <!-->H, F, Cl, Br and I), has revealed its merits in tests made with K<!--> <!-->=<!--> <!-->H or <span><math><mrow><msub><mrow><mtext>CH</mtext></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span>. Finally, a brief inroad is made in the world of dissociation energies, also exemplifying the calculation of “difficult” bonds, like peroxydic O–O links or N–N bonds in hydrazines, which foreshadows new routes in quantitative bond-energy theory.</p></div>","PeriodicalId":16419,"journal":{"name":"Journal of Molecular Structure-theochem","volume":"962 1","pages":"Pages 38-44"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.theochem.2010.09.008","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Structure-theochem","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166128010005798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Results given by the new formula for the standard perfect-gas enthalpy of formation, ΔHf=KF(K)+ZPE+HT-H0-k<lεkl-(CNE-Enb), are compared with experiment. F(K),F(L), are fixed parameters of chemical groups K, L, etc. and εkl is the intrinsic energy of the link between K and L. Z=ZPE+HT-H0 is the familiar sum of zero-point + heat-content energies and CNE accounts for the fact that the fragments K, L, etc. are not individually electroneutral in their host molecule. Enb stands for nonbonded interactions between the fragments. The reduction of the 3-fragment formula applicable to molecules written K-[CH(X)]-L to get its equivalent for the 2-fragment form [CHK(X)]-L reveals a most useful relationship between the functions F[CH(X)] and F[CH2(X)]: the latter is usually easy to obtain, but it is F[CH(X)] that is actually required in the 3-fragment problem K-[CH(X)]-L. Fragments of this form, already known for X=CH3, were successfully tested for X=C2H5,n-C3H7,C6H5,CH=CH2andC(CH3)CH2; moreover, fragments of the form C(X,Y) with X=CH3 and Y=CH3, C2H5, n-C3H7 or CHCH2 were also shown to satisfy the master equation forΔHf. The formula derived for CX bonds, εCX+CNE=F[X]+F[CH(X)]-F[CHK(X)] (where X = H, F, Cl, Br and I), has revealed its merits in tests made with K = H or CH3. Finally, a brief inroad is made in the world of dissociation energies, also exemplifying the calculation of “difficult” bonds, like peroxydic O–O links or N–N bonds in hydrazines, which foreshadows new routes in quantitative bond-energy theory.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
准可转移的分子片段。第四部分:键能和键解离:新方法和与经典结果的比较
用新公式ΔHf°=∑KF(K)+ZPE+HT-H0-∑k<lεkl-(CNE-Enb)与实验结果进行了比较。F(K),F(L),…是K, L等化学基团的固定参数,εkl是K和L之间的键的固有能。Z=ZPE+HT-H0是我们熟悉的零点+热含量能和,CNE解释了片段K, L等在它们的宿主分子中不是单独的电中性。Enb代表片段之间的非键相互作用。对K-[CH(X)]- l分子的3片段式进行还原,得到其2片段形式[CHK(X)]- l的等价物,揭示了函数F[CH(X)]和F[CH2(X)]之间最有用的关系:后者通常很容易得到,但在3片段问题K-[CH(X)]- l中实际需要的是F[CH(X)]。这种形式的片段,已知的X=CH3,已经成功地测试了X=C2H5,n-C3H7,C6H5,CH= ch2和c (CH3)CH2;此外,含有X=CH3和Y=CH3、C2H5、n-C3H7或CHCH2的形式C(X,Y)片段也被证明满足主方程forΔHf°。CX键的公式εCX+CNE=F[X]+F[CH(X)]-F[CHK(X)](其中X = H, F, Cl, Br和I)在K = H或CH3的试验中显示出其优点。最后,简要介绍了解离能的世界,也举例说明了“困难”键的计算,如过氧O-O键或联胺中的N-N键,这预示了定量键能理论的新路线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3.0 months
期刊最新文献
Author Index Subject Index Editorial Board The kernel energy method: Construction of 3- and 4-tuple kernels from a list of double kernel interactions The electronic properties of a homoleptic bisphosphine Cu(I) complex: A joint theoretical and experimental insight
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1