{"title":"Closed-form alignment of active surface models using splines","authors":"D. Schmitter, M. Unser","doi":"10.1109/ISBI.2017.7950505","DOIUrl":null,"url":null,"abstract":"We propose a new formulation of the active surface model in 3D. Instead of aligning a shape dictionary through the similarity transform, we consider more flexible affine transformations and introduce an alignment method that is unbiased in the sense that it implicitly constructs a common reference shape. Our formulation is expressed in the continuous domain and we provide an algorithm to exactly implement the framework using spline-based parametric surfaces. We test our model on real 3D MRI data. A comparison with the classical active shape model shows that our method allows us to capture shape variability in a dictionary in a more precise way.","PeriodicalId":6547,"journal":{"name":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","volume":"42 1","pages":"219-222"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2017.7950505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a new formulation of the active surface model in 3D. Instead of aligning a shape dictionary through the similarity transform, we consider more flexible affine transformations and introduce an alignment method that is unbiased in the sense that it implicitly constructs a common reference shape. Our formulation is expressed in the continuous domain and we provide an algorithm to exactly implement the framework using spline-based parametric surfaces. We test our model on real 3D MRI data. A comparison with the classical active shape model shows that our method allows us to capture shape variability in a dictionary in a more precise way.