Finite Element Representations of Gaussian Processes: Balancing Numerical and Statistical Accuracy

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2021-09-06 DOI:10.1137/21m144788x
D. Sanz-Alonso, Ruiyi Yang
{"title":"Finite Element Representations of Gaussian Processes: Balancing Numerical and Statistical Accuracy","authors":"D. Sanz-Alonso, Ruiyi Yang","doi":"10.1137/21m144788x","DOIUrl":null,"url":null,"abstract":"The stochastic partial differential equation approach to Gaussian processes (GPs) represents Matérn GP priors in terms of 𝑛 finite element basis functions and Gaussian coefficients with sparse precision matrix. Such representations enhance the scalability of GP regression and classification to datasets of large size 𝑁 by setting 𝑛 ≈ 𝑁 and exploiting sparsity. In this paper we reconsider the standard choice 𝑛 ≈ 𝑁 through an analysis of the estimation performance. Our theory implies that, under certain smoothness assumptions, one can reduce the computation and memory cost without hindering the estimation accuracy by setting 𝑛 ≪ 𝑁 in the large 𝑁 asymptotics. Numerical experiments illustrate the applicability of our theory and the effect of the prior lengthscale in the pre-asymptotic regime.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/21m144788x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 11

Abstract

The stochastic partial differential equation approach to Gaussian processes (GPs) represents Matérn GP priors in terms of 𝑛 finite element basis functions and Gaussian coefficients with sparse precision matrix. Such representations enhance the scalability of GP regression and classification to datasets of large size 𝑁 by setting 𝑛 ≈ 𝑁 and exploiting sparsity. In this paper we reconsider the standard choice 𝑛 ≈ 𝑁 through an analysis of the estimation performance. Our theory implies that, under certain smoothness assumptions, one can reduce the computation and memory cost without hindering the estimation accuracy by setting 𝑛 ≪ 𝑁 in the large 𝑁 asymptotics. Numerical experiments illustrate the applicability of our theory and the effect of the prior lengthscale in the pre-asymptotic regime.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高斯过程的有限元表示:平衡数值和统计精度
高斯过程(GPs)的随机偏微分方程方法用𝑛有限元基函数和高斯系数的稀疏精度矩阵来表示mat n n GP先验。这样的表示通过设置𝑛≈抛掷和利用稀疏性,增强了GP回归和分类对大型数据集的可扩展性。在本文中,我们通过对估计性能的分析,重新考虑了标准选择𝑛≈二进制操作。我们的理论表明,在一定的平滑性假设下,可以通过设置𝑛在大的渐近曲线中≪倘使计算和存储成本降低而不影响估计精度。数值实验证明了本文理论的适用性和先验长度尺度在前渐近状态下的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1