{"title":"RENAL CYST DETECTION IN ABDOMINAL MRI IMAGES USING DEEP LEARNING SEGMENTATION","authors":"S. Sowmiya, U. Snehalatha, Jayanth Murugan","doi":"10.4015/s1016237223500229","DOIUrl":null,"url":null,"abstract":"Renal cysts are categorized as simple cysts and complex cysts. Simple cysts are harmless and complicated cysts are cancerous and leading to a dangerous situation. The study aims to implement a deep learning-based segmentation that uses the Renal images to segment the cyst, detecting the size of the cyst and assessing the state of cyst from the infected renal image. The automated method for segmenting renal cysts from MRI abdominal images is based on a U-net algorithm. The deep learning-based segmentation like U-net algorithm segmented the renal cyst. The characteristics of the segmented cyst were analyzed using the Statistical features extracted using GLCM algorithm. The machine learning classification is performed using the extracted GLCM features. Three machine learning classifiers such as Naïve Bayes, Hoeffding Tree and SVM are used in the proposed study. Naive Bayes and Hoeffding Tree achieved the highest accuracy of 98%. The SVM classifier achieved 96% of accuracy. This study proposed a new system to diagnose the renal cyst from MRI abdomen images. Our study focused on cyst segmentation, size detection, feature extraction and classification. The three-classification method suits best for classifying the renal cyst. Naïve Bayes and Hoeffding Tree classifier achieved the highest accuracy. The diameter of cyst size is measured using the blobs analysis method to predict the renal cyst at an earlier stage. Hence, the deep learning-based segmentation performed well in segmenting the renal cyst and the three classifiers achieved the highest accuracy, above 95%.","PeriodicalId":8862,"journal":{"name":"Biomedical Engineering: Applications, Basis and Communications","volume":"29 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering: Applications, Basis and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4015/s1016237223500229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Renal cysts are categorized as simple cysts and complex cysts. Simple cysts are harmless and complicated cysts are cancerous and leading to a dangerous situation. The study aims to implement a deep learning-based segmentation that uses the Renal images to segment the cyst, detecting the size of the cyst and assessing the state of cyst from the infected renal image. The automated method for segmenting renal cysts from MRI abdominal images is based on a U-net algorithm. The deep learning-based segmentation like U-net algorithm segmented the renal cyst. The characteristics of the segmented cyst were analyzed using the Statistical features extracted using GLCM algorithm. The machine learning classification is performed using the extracted GLCM features. Three machine learning classifiers such as Naïve Bayes, Hoeffding Tree and SVM are used in the proposed study. Naive Bayes and Hoeffding Tree achieved the highest accuracy of 98%. The SVM classifier achieved 96% of accuracy. This study proposed a new system to diagnose the renal cyst from MRI abdomen images. Our study focused on cyst segmentation, size detection, feature extraction and classification. The three-classification method suits best for classifying the renal cyst. Naïve Bayes and Hoeffding Tree classifier achieved the highest accuracy. The diameter of cyst size is measured using the blobs analysis method to predict the renal cyst at an earlier stage. Hence, the deep learning-based segmentation performed well in segmenting the renal cyst and the three classifiers achieved the highest accuracy, above 95%.
期刊介绍:
Biomedical Engineering: Applications, Basis and Communications is an international, interdisciplinary journal aiming at publishing up-to-date contributions on original clinical and basic research in the biomedical engineering. Research of biomedical engineering has grown tremendously in the past few decades. Meanwhile, several outstanding journals in the field have emerged, with different emphases and objectives. We hope this journal will serve as a new forum for both scientists and clinicians to share their ideas and the results of their studies.
Biomedical Engineering: Applications, Basis and Communications explores all facets of biomedical engineering, with emphasis on both the clinical and scientific aspects of the study. It covers the fields of bioelectronics, biomaterials, biomechanics, bioinformatics, nano-biological sciences and clinical engineering. The journal fulfils this aim by publishing regular research / clinical articles, short communications, technical notes and review papers. Papers from both basic research and clinical investigations will be considered.