Structural reliability and partial safety factor assessment of unreinforced masonry in vertical bending

IF 0.9 Q4 ENGINEERING, CIVIL Australian Journal of Structural Engineering Pub Date : 2023-02-17 DOI:10.1080/13287982.2023.2173868
Andrea Isfeld, M. Stewart, M. Masia
{"title":"Structural reliability and partial safety factor assessment of unreinforced masonry in vertical bending","authors":"Andrea Isfeld, M. Stewart, M. Masia","doi":"10.1080/13287982.2023.2173868","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper focuses on a structural reliability-based assessment of clay brick unreinforced masonry (URM) walls subjected to uniformly distributed out-of-plane loads in one-way vertical bending. Stochastic models combining finite element analysis (FEA) and Monte Carlo simulations (MCS) are used to account for spatial variability of the flexural tensile bond strength when estimating the wall failure loads. The strength of URM walls is known to be influenced by the flexural tensile bond strength, which is subject to high spatial variability as batching, workmanship, and environmental exposure alter the strength of this bond. For this assessment, single skin walls have been considered with bond strength statistics seen in typical construction. The model error statistics available for similar walls are combined with the results of the spatial stochastic FEA and probabilistic load models to determine the reliability index corresponding to the Australian Standard for Masonry Structures AS 3700 design of members in vertical bending. It was found that existing levels of reliability exceed target reliabilities, and the capacity reduction factor can be increased from 0.60 to 0.65 for URM walls in one-way vertical bending while still providing an acceptable level of reliability. A sensitivity analysis showed this finding to be robust.","PeriodicalId":45617,"journal":{"name":"Australian Journal of Structural Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13287982.2023.2173868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT This paper focuses on a structural reliability-based assessment of clay brick unreinforced masonry (URM) walls subjected to uniformly distributed out-of-plane loads in one-way vertical bending. Stochastic models combining finite element analysis (FEA) and Monte Carlo simulations (MCS) are used to account for spatial variability of the flexural tensile bond strength when estimating the wall failure loads. The strength of URM walls is known to be influenced by the flexural tensile bond strength, which is subject to high spatial variability as batching, workmanship, and environmental exposure alter the strength of this bond. For this assessment, single skin walls have been considered with bond strength statistics seen in typical construction. The model error statistics available for similar walls are combined with the results of the spatial stochastic FEA and probabilistic load models to determine the reliability index corresponding to the Australian Standard for Masonry Structures AS 3700 design of members in vertical bending. It was found that existing levels of reliability exceed target reliabilities, and the capacity reduction factor can be increased from 0.60 to 0.65 for URM walls in one-way vertical bending while still providing an acceptable level of reliability. A sensitivity analysis showed this finding to be robust.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无筋砌体竖向弯曲结构可靠性及部分安全系数评定
摘要本文研究了在单向竖向弯曲条件下均布面外荷载作用下粘土砖无筋砌体(URM)墙体的结构可靠性评估。采用有限元分析(FEA)和蒙特卡罗模拟(MCS)相结合的随机模型来估计墙体破坏荷载时挠曲拉伸粘结强度的空间变异性。已知URM墙体的强度受弯曲拉伸粘合强度的影响,该强度受到高空间变异性的影响,如配料、工艺和环境暴露改变了这种粘合强度。在此评估中,考虑了典型结构中粘结强度统计数据的单层墙体。结合相似墙体的模型误差统计,结合空间随机有限元分析和概率荷载模型的结果,确定了符合澳大利亚砌体结构标准as3700竖向弯曲构件设计的可靠度指标。研究发现,现有可靠度水平超过了目标可靠度水平,单向垂直弯曲下URM墙体的容量折减系数可以从0.60提高到0.65,同时仍能提供可接受的可靠度水平。敏感性分析表明这一发现是可靠的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
31
期刊介绍: The Australian Journal of Structural Engineering (AJSE) is published under the auspices of the Structural College Board of Engineers Australia. It fulfils part of the Board''s mission for Continuing Professional Development. The journal also offers a means for exchange and interaction of scientific and professional issues and technical developments. The journal is open to members and non-members of Engineers Australia. Original papers on research and development (Technical Papers) and professional matters and achievements (Professional Papers) in all areas relevant to the science, art and practice of structural engineering are considered for possible publication. All papers and technical notes are peer-reviewed. The fundamental criterion for acceptance for publication is the intellectual and professional value of the contribution. Occasionally, papers previously published in essentially the same form elsewhere may be considered for publication. In this case acknowledgement to prior publication must be included in a footnote on page one of the manuscript. These papers are peer-reviewed as new submissions. The length of acceptable contributions typically should not exceed 4,000 to 5,000 word equivalents. Longer manuscripts may be considered at the discretion of the Editor. Technical Notes typically should not exceed about 1,000 word equivalents. Discussions on a Paper or Note published in the AJSE are welcomed. Discussions must address significant matters related to the content of a Paper or Technical Note and may include supplementary and critical comments and questions regarding content.
期刊最新文献
Performance evaluation of concrete comprising sugarcane bagasse ash and recycled polyethylene terephthalate Improving seismic performance of structural systems via reinforcing column bases Evaluation on structural performance of hybrid composite post-tension plate girder through finite element analysis Determination of response modification coefficient of SPSW in RC frame using plastic design method A plastic hinge method for static pushover analysis of 3D frame structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1