{"title":"Numerical Investigation of Inclined Piles under Liquefaction-Induced Lateral Spreading","authors":"Yu Wang, Rolando P Orense","doi":"10.3390/geotechnics3020019","DOIUrl":null,"url":null,"abstract":"Inclined piles have been widely applied as one of the countermeasures against large lateral spreading induced by soil liquefaction during earthquakes. However, the unsatisfactory performance of inclined piles in past events has impeded their application in seismic areas. To elucidate the performance of inclined piles when subjected to lateral spreading induced by soil liquefaction, numerical analyzes were performed using the OpenSees framework. For this purpose, a comprehensive three-dimensional finite element model was developed. Interface elements were used between the soil and the pile to account for the friction and gapping mechanisms. A multi-yield-surface plasticity constitutive relationship for sand was adopted to simulate the soil liquefaction behavior. Based on the proposed numerical model, parametric analyzes were conducted to investigate the influence of various factors on the behavior of inclined piles, including the raked angle of the pile, the ground slope, the soil profile, and the amplitude of the input motion. The response of the system indicates that inclined piles can behave better than vertical piles in decreasing soil deformation and the cap response. The influences of the investigated factors are highlighted to adopt the appropriate pile inclination in laterally spreading ground and maximize the advantages of using inclined piles.","PeriodicalId":11823,"journal":{"name":"Environmental geotechnics","volume":"214 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental geotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/geotechnics3020019","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Inclined piles have been widely applied as one of the countermeasures against large lateral spreading induced by soil liquefaction during earthquakes. However, the unsatisfactory performance of inclined piles in past events has impeded their application in seismic areas. To elucidate the performance of inclined piles when subjected to lateral spreading induced by soil liquefaction, numerical analyzes were performed using the OpenSees framework. For this purpose, a comprehensive three-dimensional finite element model was developed. Interface elements were used between the soil and the pile to account for the friction and gapping mechanisms. A multi-yield-surface plasticity constitutive relationship for sand was adopted to simulate the soil liquefaction behavior. Based on the proposed numerical model, parametric analyzes were conducted to investigate the influence of various factors on the behavior of inclined piles, including the raked angle of the pile, the ground slope, the soil profile, and the amplitude of the input motion. The response of the system indicates that inclined piles can behave better than vertical piles in decreasing soil deformation and the cap response. The influences of the investigated factors are highlighted to adopt the appropriate pile inclination in laterally spreading ground and maximize the advantages of using inclined piles.
期刊介绍:
In 21st century living, engineers and researchers need to deal with growing problems related to climate change, oil and water storage, handling, storage and disposal of toxic and hazardous wastes, remediation of contaminated sites, sustainable development and energy derived from the ground.
Environmental Geotechnics aims to disseminate knowledge and provides a fresh perspective regarding the basic concepts, theory, techniques and field applicability of innovative testing and analysis methodologies and engineering practices in geoenvironmental engineering.
The journal''s Editor in Chief is a Member of the Committee on Publication Ethics.
All relevant papers are carefully considered, vetted by a distinguished team of international experts and rapidly published. Full research papers, short communications and comprehensive review articles are published under the following broad subject categories:
geochemistry and geohydrology,
soil and rock physics, biological processes in soil, soil-atmosphere interaction,
electrical, electromagnetic and thermal characteristics of porous media,
waste management, utilization of wastes, multiphase science, landslide wasting,
soil and water conservation,
sensor development and applications,
the impact of climatic changes on geoenvironmental, geothermal/ground-source energy, carbon sequestration, oil and gas extraction techniques,
uncertainty, reliability and risk, monitoring and forensic geotechnics.