{"title":"Suppressing stimulated Raman side-scattering with vector light","authors":"Xiaobao Jia, Q. Jia, R. Yan, Jian Zheng","doi":"10.1063/5.0157811","DOIUrl":null,"url":null,"abstract":"Recent observations of stimulated Raman side-scattering (SRSS) in different laser inertial confinement fusion ignition schemes have revealed that there is an underlying risk of SRSS on ignition. In this paper, we propose a method that uses the nonuniform nature of the polarization of vector light to suppress SRSS, and we give an additional threshold condition determined by the parameters of the vector light. For SRSS at 90°, where the scattered electromagnetic wave travels perpendicular to the density profile, the variation in polarization of the pump will change the wave vector of the scattered light, thereby reducing the growth length and preventing the scattered electromagnetic wave from growing. This suppression scheme is verified through three-dimensional particle-in-cell simulations. Our illustrative simulation results demonstrate that for linearly polarized Gaussian light, there is a strong SRSS signal in the 90° direction, whereas for vector light, there is very little SRSS signal, even when the conditions significantly exceed the threshold for SRSS. We also discuss the impact of vector light on stimulated Raman backscattering, collective stimulated Brillouin scattering and two-plasmon decay.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"35 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter and Radiation at Extremes","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0157811","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent observations of stimulated Raman side-scattering (SRSS) in different laser inertial confinement fusion ignition schemes have revealed that there is an underlying risk of SRSS on ignition. In this paper, we propose a method that uses the nonuniform nature of the polarization of vector light to suppress SRSS, and we give an additional threshold condition determined by the parameters of the vector light. For SRSS at 90°, where the scattered electromagnetic wave travels perpendicular to the density profile, the variation in polarization of the pump will change the wave vector of the scattered light, thereby reducing the growth length and preventing the scattered electromagnetic wave from growing. This suppression scheme is verified through three-dimensional particle-in-cell simulations. Our illustrative simulation results demonstrate that for linearly polarized Gaussian light, there is a strong SRSS signal in the 90° direction, whereas for vector light, there is very little SRSS signal, even when the conditions significantly exceed the threshold for SRSS. We also discuss the impact of vector light on stimulated Raman backscattering, collective stimulated Brillouin scattering and two-plasmon decay.
期刊介绍:
Matter and Radiation at Extremes (MRE), is committed to the publication of original and impactful research and review papers that address extreme states of matter and radiation, and the associated science and technology that are employed to produce and diagnose these conditions in the laboratory. Drivers, targets and diagnostics are included along with related numerical simulation and computational methods. It aims to provide a peer-reviewed platform for the international physics community and promote worldwide dissemination of the latest and impactful research in related fields.