{"title":"On Co-Training Style Algorithms","authors":"Cailing Dong, Yilong Yin, X. Guo, Gongping Yang, Guang-Tong Zhou","doi":"10.1109/ICNC.2008.874","DOIUrl":null,"url":null,"abstract":"During the past few years, semi-supervised learning has become a hot topic in machine learning and data mining, since manually labeling training examples is a tedious, error prone and time-consuming task in many practical applications. As one of the most predominant semi-supervised learning algorithms, co-training has drawn much attention and shown its superiority in many applications. So far, there have been a variety of variants of co-training algorithms aiming to settle practical problems. In order to launch an effective co-training process, these variants as a whole create their diversities in four different ways, i.e. two-view level, underlying classifiers level, datasets level and active learning level. This paper gives a review on co-training style algorithms just from this view and presents typical examples and analysis for each level respectively.","PeriodicalId":6404,"journal":{"name":"2008 Fourth International Conference on Natural Computation","volume":"8 1","pages":"196-201"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fourth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2008.874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
During the past few years, semi-supervised learning has become a hot topic in machine learning and data mining, since manually labeling training examples is a tedious, error prone and time-consuming task in many practical applications. As one of the most predominant semi-supervised learning algorithms, co-training has drawn much attention and shown its superiority in many applications. So far, there have been a variety of variants of co-training algorithms aiming to settle practical problems. In order to launch an effective co-training process, these variants as a whole create their diversities in four different ways, i.e. two-view level, underlying classifiers level, datasets level and active learning level. This paper gives a review on co-training style algorithms just from this view and presents typical examples and analysis for each level respectively.