A compact MLCP-based projection recurrent neural network model to solve shortest path problem

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Experimental & Theoretical Artificial Intelligence Pub Date : 2022-04-21 DOI:10.1080/0952813X.2022.2067247
Mohammad Eshaghnezhad, S. Effati, A. Mansoori
{"title":"A compact MLCP-based projection recurrent neural network model to solve shortest path problem","authors":"Mohammad Eshaghnezhad, S. Effati, A. Mansoori","doi":"10.1080/0952813X.2022.2067247","DOIUrl":null,"url":null,"abstract":"ABSTRACT We develop a projection recurrent neural network (RNN) to obtain the solution of the shortest path problem (SPP). Our focus on the paper is to give a compact single-layer structure RNN model to solve the SPP. To present the RNN model, we utilise a mixed linear complementarity problem (MLCP). Moreover, the developed RNN is proved to be globally stable. Finally, some numerical simulations are stated to show the performance of the presented approach. We compare the results with some other methods.","PeriodicalId":15677,"journal":{"name":"Journal of Experimental & Theoretical Artificial Intelligence","volume":"18 1","pages":"1101 - 1119"},"PeriodicalIF":1.7000,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Theoretical Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0952813X.2022.2067247","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT We develop a projection recurrent neural network (RNN) to obtain the solution of the shortest path problem (SPP). Our focus on the paper is to give a compact single-layer structure RNN model to solve the SPP. To present the RNN model, we utilise a mixed linear complementarity problem (MLCP). Moreover, the developed RNN is proved to be globally stable. Finally, some numerical simulations are stated to show the performance of the presented approach. We compare the results with some other methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于mlcp的紧凑投影递归神经网络模型求解最短路径问题
提出了一种投影递归神经网络(RNN)来求解最短路径问题(SPP)。本文的重点是给出一个紧凑的单层结构RNN模型来解决SPP问题,我们利用混合线性互补问题(MLCP)来表示RNN模型。此外,还证明了所开发的RNN具有全局稳定性。最后,通过数值仿真验证了该方法的有效性。我们将结果与其他方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.10
自引率
4.50%
发文量
89
审稿时长
>12 weeks
期刊介绍: Journal of Experimental & Theoretical Artificial Intelligence (JETAI) is a world leading journal dedicated to publishing high quality, rigorously reviewed, original papers in artificial intelligence (AI) research. The journal features work in all subfields of AI research and accepts both theoretical and applied research. Topics covered include, but are not limited to, the following: • cognitive science • games • learning • knowledge representation • memory and neural system modelling • perception • problem-solving
期刊最新文献
Occlusive target recognition method of sorting robot based on anchor-free detection network An effectual underwater image enhancement framework using adaptive trans-resunet ++ with attention mechanism An experimental study of sentiment classification using deep-based models with various word embedding techniques Sign language video to text conversion via optimised LSTM with improved motion estimation An efficient safest route prediction-based route discovery mechanism for drivers using improved golden tortoise beetle optimizer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1