Effect of stirring to produce ferric saccharide capsules with alginate coating

Susan Khosroyar, A. Arastehnodeh
{"title":"Effect of stirring to produce ferric saccharide capsules with alginate coating","authors":"Susan Khosroyar, A. Arastehnodeh","doi":"10.26655/AJNANOMAT.2019.3.6","DOIUrl":null,"url":null,"abstract":"The present study has focused on the effect of stirring to produce ferric saccharide capsules with alginate coating applying the coacervation method so that we can obtain the best capsules for fortification of hydrated and dehydrated food products. At first, three methods including stirrer, ultra-sonic and sonic bath were compared in order to select the best way of stirring. The experiments results showed that turning was provided by the stirrer method resulted in capsulation with spherical morphology and uniform distribution of surface. In this case the other factors such as the alginate concentration and calcium salt concentration were investigated. After studying the various conditions, it is suggested that the best Capsules were formed in alginate 3% at 500 rpm with concentration of calcium chloride salt 1M. The resulted capsules by this method had a high efficiency and were more stable in hydrated and dehydrated food ingredients network for a long time.","PeriodicalId":8523,"journal":{"name":"Asian Journal of Nanoscience and Materials","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Nanoscience and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26655/AJNANOMAT.2019.3.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present study has focused on the effect of stirring to produce ferric saccharide capsules with alginate coating applying the coacervation method so that we can obtain the best capsules for fortification of hydrated and dehydrated food products. At first, three methods including stirrer, ultra-sonic and sonic bath were compared in order to select the best way of stirring. The experiments results showed that turning was provided by the stirrer method resulted in capsulation with spherical morphology and uniform distribution of surface. In this case the other factors such as the alginate concentration and calcium salt concentration were investigated. After studying the various conditions, it is suggested that the best Capsules were formed in alginate 3% at 500 rpm with concentration of calcium chloride salt 1M. The resulted capsules by this method had a high efficiency and were more stable in hydrated and dehydrated food ingredients network for a long time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海藻酸盐包衣制备糖铁胶囊的搅拌效果
本文研究了采用凝聚法制备海藻酸盐包衣铁糖胶囊的搅拌效果,以期获得最佳的水合和脱水食品强化胶囊。首先对搅拌、超声波和声波浴三种搅拌方式进行了比较,以选择最佳的搅拌方式。实验结果表明,采用搅拌法进行旋转,得到的胶囊形貌呈球形,表面分布均匀。本实验考察了海藻酸盐浓度和钙盐浓度等其他因素的影响。通过对各种条件的研究,认为在海藻酸盐3%、氯化钙盐浓度为1M、转速为500 rpm的条件下形成的胶囊效果最好。该方法制备的胶囊效率高,在水合和脱水食品配料网络中具有较长的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesis of bis(4-hydroxycoumarin)methanes using nano-CuO/CeO2 as recyclable catalyst The reaction of curcumin-hydrazine and its effect on bone marrow mesenchymal stem cells Hydrothermal synthesis of ZnO nanoparticles and comparison of its adsorption characteristics with the natural adsorbent (mango peel) Synthesis WO3 nanoparticle via the electrochemical method and study its super-hydrophobicity properties A review: Application and production of nanoencapsulation in the food sector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1