{"title":"Wine Grapes Ripening: A Review on Climate Effect and Analytical Approach to Increase Wine Quality","authors":"M. Rouxinol, M. Martins, J. M. Barroso, A. Rato","doi":"10.3390/applbiosci2030023","DOIUrl":null,"url":null,"abstract":"Red wine grapes have an important impact on the economy of many regions, both for wine quality and for their richness in phenolic compounds, which have many health benefits. Climate has been changing substantially in the last years, which affects greatly grape polyphenolic composition and wine quality. In this review, we will unveil the importance of climate in grape development, both physically and chemically, the different methodologies used to evaluate grape quality, the interesting new approaches using NIR spectroscopy, and the functional properties of grapes and red wine, due to their high phenolic content. Climate has an impact in the development of phenolic compounds in grapes, namely in the anthocyanins biosynthesis. The phenolic chemical composition changes during maturation, therefore, it is essential to keep on track the accumulation of these key compounds. This information is crucial to help producers choose the best harvest date since specific compounds like polyphenols are responsible for the color, taste, and mouthfeel of wines, which directly affects wine quality. The usage of different methodologies to assess quality parameters in grapes and wine, can be used to provide essential information to create the chemical profile of each variety to develop calibration methods. NIR spectroscopy seems to be a reliable method to be used in vineyards during grape maturation to provide real time information on quality parameters to producers since many reliable calibration models have been developed over time.","PeriodicalId":14998,"journal":{"name":"Journal of Applied Biosciences","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/applbiosci2030023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Red wine grapes have an important impact on the economy of many regions, both for wine quality and for their richness in phenolic compounds, which have many health benefits. Climate has been changing substantially in the last years, which affects greatly grape polyphenolic composition and wine quality. In this review, we will unveil the importance of climate in grape development, both physically and chemically, the different methodologies used to evaluate grape quality, the interesting new approaches using NIR spectroscopy, and the functional properties of grapes and red wine, due to their high phenolic content. Climate has an impact in the development of phenolic compounds in grapes, namely in the anthocyanins biosynthesis. The phenolic chemical composition changes during maturation, therefore, it is essential to keep on track the accumulation of these key compounds. This information is crucial to help producers choose the best harvest date since specific compounds like polyphenols are responsible for the color, taste, and mouthfeel of wines, which directly affects wine quality. The usage of different methodologies to assess quality parameters in grapes and wine, can be used to provide essential information to create the chemical profile of each variety to develop calibration methods. NIR spectroscopy seems to be a reliable method to be used in vineyards during grape maturation to provide real time information on quality parameters to producers since many reliable calibration models have been developed over time.