{"title":"Design of a dispersion flattened germanium doped silica modified hexagonal photonic crystal fiber with ultra low confinement losses","authors":"S. Kabir, G. Hasanuzzaman, M. Khan","doi":"10.1109/CEEE.2015.7428232","DOIUrl":null,"url":null,"abstract":"This paper presents an optimum design for dispersion managed photonic crystal fibers with low confinement losses. The COMSOL multi-physics 4.2 software is used as the simulation tool. According to simulation, a five-ringed modified hexagonal photonic crystal fiber (MH-PCF) having germanium (Ge) doped silica core can be designed with a low confinement loss at 1550 nm of the order 1.026×10-14 dB/km with simultaneously nearly-zero ultra-flattened chromatic dispersion of 0 ± 0.35 ps/nm/km in a wavelength range of 1.30 to 1.65 μm as well as large effective area in a wide range of wavelengths. The fiber having a modest number of design parameters is suitable for wavelength division multiplexing (WDM) system.","PeriodicalId":6490,"journal":{"name":"2015 International Conference on Electrical & Electronic Engineering (ICEEE)","volume":"29 1","pages":"113-116"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Electrical & Electronic Engineering (ICEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEEE.2015.7428232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper presents an optimum design for dispersion managed photonic crystal fibers with low confinement losses. The COMSOL multi-physics 4.2 software is used as the simulation tool. According to simulation, a five-ringed modified hexagonal photonic crystal fiber (MH-PCF) having germanium (Ge) doped silica core can be designed with a low confinement loss at 1550 nm of the order 1.026×10-14 dB/km with simultaneously nearly-zero ultra-flattened chromatic dispersion of 0 ± 0.35 ps/nm/km in a wavelength range of 1.30 to 1.65 μm as well as large effective area in a wide range of wavelengths. The fiber having a modest number of design parameters is suitable for wavelength division multiplexing (WDM) system.