{"title":"AxV: An autonomous vehicle concept capable of operating throughout the ocean space: air, surface and subsea","authors":"J. Bowker, M. Tan, N. Townsend","doi":"10.1177/14750902221150285","DOIUrl":null,"url":null,"abstract":"This paper presents a concept design for an Autonomous Vehicle (AxV) capable of operating throughout the ocean space; air, surface and subsea. With current autonomous platforms limited in their operation, for example aerial platforms only operate in air, ASVs only operate on the ocean surface and AUVs operate subsea, a platform which can operate, transiting and transitioning in and between air, surface and subsea, providing increased mobility is very attractive. In this paper, a novel AxV platform is described. The governing equations are presented, describing each operational mode and the transitions between modes (air to surface, surface to subsea, subsea to surface, surface to air). Results are presented based on the dimensions of existing vehicles, showing that the system is theoretically feasible.","PeriodicalId":20667,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment","volume":"125 1","pages":"918 - 928"},"PeriodicalIF":1.5000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14750902221150285","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 2
Abstract
This paper presents a concept design for an Autonomous Vehicle (AxV) capable of operating throughout the ocean space; air, surface and subsea. With current autonomous platforms limited in their operation, for example aerial platforms only operate in air, ASVs only operate on the ocean surface and AUVs operate subsea, a platform which can operate, transiting and transitioning in and between air, surface and subsea, providing increased mobility is very attractive. In this paper, a novel AxV platform is described. The governing equations are presented, describing each operational mode and the transitions between modes (air to surface, surface to subsea, subsea to surface, surface to air). Results are presented based on the dimensions of existing vehicles, showing that the system is theoretically feasible.
期刊介绍:
The Journal of Engineering for the Maritime Environment is concerned with the design, production and operation of engineering artefacts for the maritime environment. The journal straddles the traditional boundaries of naval architecture, marine engineering, offshore/ocean engineering, coastal engineering and port engineering.