Video Segmentation via Multiple Granularity Analysis

Rui Yang, Bingbing Ni, Chao Ma, Yi Xu, Xiaokang Yang
{"title":"Video Segmentation via Multiple Granularity Analysis","authors":"Rui Yang, Bingbing Ni, Chao Ma, Yi Xu, Xiaokang Yang","doi":"10.1109/CVPR.2017.676","DOIUrl":null,"url":null,"abstract":"We introduce a Multiple Granularity Analysis framework for video segmentation in a coarse-to-fine manner. We cast video segmentation as a spatio-temporal superpixel labeling problem. Benefited from the bounding volume provided by off-the-shelf object trackers, we estimate the foreground/ background super-pixel labeling using the spatiotemporal multiple instance learning algorithm to obtain coarse foreground/background separation within the volume. We further refine the segmentation mask in the pixel level using the graph-cut model. Extensive experiments on benchmark video datasets demonstrate the superior performance of the proposed video segmentation algorithm.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"23 1","pages":"6383-6392"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We introduce a Multiple Granularity Analysis framework for video segmentation in a coarse-to-fine manner. We cast video segmentation as a spatio-temporal superpixel labeling problem. Benefited from the bounding volume provided by off-the-shelf object trackers, we estimate the foreground/ background super-pixel labeling using the spatiotemporal multiple instance learning algorithm to obtain coarse foreground/background separation within the volume. We further refine the segmentation mask in the pixel level using the graph-cut model. Extensive experiments on benchmark video datasets demonstrate the superior performance of the proposed video segmentation algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多粒度分析的视频分割
我们引入了一个多粒度分析框架,用于视频从粗到精的分割。我们将视频分割视为一个时空超像素标记问题。利用现成的目标跟踪器提供的边界体,我们使用时空多实例学习算法估计前景/背景超像素标记,以在体积内获得粗略的前景/背景分离。我们使用图切模型在像素级进一步细化分割掩码。在基准视频数据集上的大量实验证明了所提出的视频分割算法的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FFTLasso: Large-Scale LASSO in the Fourier Domain Semantically Coherent Co-Segmentation and Reconstruction of Dynamic Scenes Coarse-to-Fine Segmentation with Shape-Tailored Continuum Scale Spaces Joint Gap Detection and Inpainting of Line Drawings Wetness and Color from a Single Multispectral Image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1