S. Micali, L. Reyzin, Georgios Vlachos, R. Wahby, N. Zeldovich
{"title":"Compact Certificates of Collective Knowledge","authors":"S. Micali, L. Reyzin, Georgios Vlachos, R. Wahby, N. Zeldovich","doi":"10.1109/SP40001.2021.00096","DOIUrl":null,"url":null,"abstract":"We introduce compact certificate schemes, which allow any party to take a large number of signatures on a message M, by many signers of different weights, and compress them to a much shorter certificate. This certificate convinces the verifiers that signers with sufficient total weight signed M, even though the verifier will not see—let alone verify—all of the signatures. Thus, for example, a compact certificate can be used to prove that parties who jointly have a sufficient total account balance have attested to a given block in a blockchain.After defining compact certificates, we demonstrate an effi-cient compact certificate scheme. We then show how to implement such a scheme in a decentralized setting over an unreliable network and in the presence of adversarial parties who wish to disrupt certificate creation. Our evaluation shows that compact certificates are 50–280× smaller and 300–4000 cheaper to verify than a natural baseline approach.","PeriodicalId":6786,"journal":{"name":"2021 IEEE Symposium on Security and Privacy (SP)","volume":"35 1","pages":"626-641"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium on Security and Privacy (SP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP40001.2021.00096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
We introduce compact certificate schemes, which allow any party to take a large number of signatures on a message M, by many signers of different weights, and compress them to a much shorter certificate. This certificate convinces the verifiers that signers with sufficient total weight signed M, even though the verifier will not see—let alone verify—all of the signatures. Thus, for example, a compact certificate can be used to prove that parties who jointly have a sufficient total account balance have attested to a given block in a blockchain.After defining compact certificates, we demonstrate an effi-cient compact certificate scheme. We then show how to implement such a scheme in a decentralized setting over an unreliable network and in the presence of adversarial parties who wish to disrupt certificate creation. Our evaluation shows that compact certificates are 50–280× smaller and 300–4000 cheaper to verify than a natural baseline approach.