P2B-17 Single-Chip Solution for Ultrasound Imaging Systems: Initial Results

A. Agarwal, T. Fukuoka, F. Schneider, Y. Yoo, F. Baluyot, Yongmin Kim
{"title":"P2B-17 Single-Chip Solution for Ultrasound Imaging Systems: Initial Results","authors":"A. Agarwal, T. Fukuoka, F. Schneider, Y. Yoo, F. Baluyot, Yongmin Kim","doi":"10.1109/ULTSYM.2007.393","DOIUrl":null,"url":null,"abstract":"Traditionally, application-specific integrated circuits (ASICs) are used for supporting the computational and data rate requirements of medical ultrasound systems. Utilizing the previously-developed efficient front-end algorithms and the continuing advances in solid state devices, we developed a hybrid programmable architecture to support core ultrasound signal processing. With the advent of new- generation digital signal processors (DSPs) (e.g., Texas Instruments' TMS320C6455 and IBM's Cell Broadband Engine), this hybrid field programmable gate array (FPGA)- DSP architecture can evolve towards a single-chip solution after overcoming the following challenges: (a) inefficient data access during dynamic focusing and (b) multiple, parallel data- transfer paths from ADCs. In this paper, we present a new single-DSP architecture, where an advanced DSP handles all the front- and back-end processing in software. To enable this new architecture, we have (a) developed a new stepwise dynamic focusing method, where the same delay curve is utilized for a group of samples along the depth direction and (b) investigated use of serial interfaces for ADC to DSP data transfer. It was found that the TMS320C6455 can meet the requirements of a 32-channel B-mode imaging system using 56.6% and 85.4% of the computing and serial I/O resources of the DSP, respectively. These results indicate that a single DSP chip solution can meet the hardware requirements for lower-end medical ultrasound systems.","PeriodicalId":6355,"journal":{"name":"2007 IEEE Ultrasonics Symposium Proceedings","volume":"4 1","pages":"1563-1566"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Ultrasonics Symposium Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2007.393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Traditionally, application-specific integrated circuits (ASICs) are used for supporting the computational and data rate requirements of medical ultrasound systems. Utilizing the previously-developed efficient front-end algorithms and the continuing advances in solid state devices, we developed a hybrid programmable architecture to support core ultrasound signal processing. With the advent of new- generation digital signal processors (DSPs) (e.g., Texas Instruments' TMS320C6455 and IBM's Cell Broadband Engine), this hybrid field programmable gate array (FPGA)- DSP architecture can evolve towards a single-chip solution after overcoming the following challenges: (a) inefficient data access during dynamic focusing and (b) multiple, parallel data- transfer paths from ADCs. In this paper, we present a new single-DSP architecture, where an advanced DSP handles all the front- and back-end processing in software. To enable this new architecture, we have (a) developed a new stepwise dynamic focusing method, where the same delay curve is utilized for a group of samples along the depth direction and (b) investigated use of serial interfaces for ADC to DSP data transfer. It was found that the TMS320C6455 can meet the requirements of a 32-channel B-mode imaging system using 56.6% and 85.4% of the computing and serial I/O resources of the DSP, respectively. These results indicate that a single DSP chip solution can meet the hardware requirements for lower-end medical ultrasound systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超声成像系统的P2B-17单芯片解决方案:初步结果
传统上,专用集成电路(asic)用于支持医疗超声系统的计算和数据速率要求。利用先前开发的高效前端算法和固态器件的持续进步,我们开发了一个混合可编程架构来支持核心超声信号处理。随着新一代数字信号处理器(DSP)的出现(例如,德州仪器的TMS320C6455和IBM的Cell宽带引擎),这种混合现场可编程门阵列(FPGA)- DSP架构可以在克服以下挑战后向单芯片解决方案发展:(a)动态聚焦期间数据访问效率低;(b) adc的多个并行数据传输路径。在本文中,我们提出了一种新的单DSP架构,其中先进的DSP在软件中处理所有的前端和后端处理。为了实现这种新架构,我们(a)开发了一种新的逐步动态聚焦方法,其中沿着深度方向对一组样本使用相同的延迟曲线,(b)研究了ADC到DSP数据传输的串行接口的使用。结果表明,TMS320C6455可以满足32通道b模式成像系统的要求,分别使用了DSP的56.6%和85.4%的计算资源和串行I/O资源。这些结果表明,单个DSP芯片解决方案可以满足低端医用超声系统的硬件要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
10B-3 Vibrating Interventional Device Detection Using Real-Time 3D Color Doppler P5E-8 The Method of Reverberation-Ray Matrix - A New Matrix Analysis of Waves in Piezoelectric Laminates P1D-4 Characteristics of a Novel Magnetic Field Sensor Using Piezoelectric Vibrations P5C-3 Field Simulation Parameters Design for Realistic Statistical Parameters of Radio - Frequency Ultrasound Images 2F-1 Fabrication and Performance of a High-Frequency Geometrically Focussed Composite Transducer with Triangular Pillar Geometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1