{"title":"Rate-diversity tradeoff of space-time codes with fixed alphabet and optimal constructions for PSK modulation","authors":"Hsiao-feng Lu, P. V. Kumar","doi":"10.1109/TIT.2003.817469","DOIUrl":null,"url":null,"abstract":"We show that for any (Q/spl times/M) space-time code S having a fixed, finite signal constellation, there is a tradeoff between the transmission rate R and the transmit diversity gain /spl nu/ achieved by the code. The tradeoff is characterized by R/spl les/Q-/spl nu/+1, where Q is the number of transmit antennas. When either binary phase-shift keying (BPSK) or quaternary phase-shift keying (QPSK) is used as the signal constellation, a systematic construction is presented to achieve the maximum possible rate for every possible value of transmit diversity gain.","PeriodicalId":13250,"journal":{"name":"IEEE Trans. Inf. Theory","volume":"49 1","pages":"2747-2751"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"100","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Inf. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIT.2003.817469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 100
Abstract
We show that for any (Q/spl times/M) space-time code S having a fixed, finite signal constellation, there is a tradeoff between the transmission rate R and the transmit diversity gain /spl nu/ achieved by the code. The tradeoff is characterized by R/spl les/Q-/spl nu/+1, where Q is the number of transmit antennas. When either binary phase-shift keying (BPSK) or quaternary phase-shift keying (QPSK) is used as the signal constellation, a systematic construction is presented to achieve the maximum possible rate for every possible value of transmit diversity gain.