Mixed linear and semidefinite programming for combinatorial and quadratic optimization

IF 1.4 3区 数学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Optimization Methods & Software Pub Date : 1999-01-01 DOI:10.1080/10556789908805761
S. Benson, Yinyu Yeb, Xiong Zhang
{"title":"Mixed linear and semidefinite programming for combinatorial and quadratic optimization","authors":"S. Benson, Yinyu Yeb, Xiong Zhang","doi":"10.1080/10556789908805761","DOIUrl":null,"url":null,"abstract":"We use the semidefinite relaxation to approximate combinatorial and quadratic optimization problems subject to linear, quadratic, as well as boolean constraints. We present a dual potential reduction algorithm and show how to exploit the sparse structure of various problems. Coupled with randomized and heuristic methods, we report computational results for approximating graph-partition and quadratic problems with dimensions 800 to 10,000. This finding, to the best of our knowledge, is the first computational evidence of the effectiveness of these approximation algorithms for solving large-scale problems.","PeriodicalId":54673,"journal":{"name":"Optimization Methods & Software","volume":"82 1","pages":"515-544"},"PeriodicalIF":1.4000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods & Software","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10556789908805761","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 50

Abstract

We use the semidefinite relaxation to approximate combinatorial and quadratic optimization problems subject to linear, quadratic, as well as boolean constraints. We present a dual potential reduction algorithm and show how to exploit the sparse structure of various problems. Coupled with randomized and heuristic methods, we report computational results for approximating graph-partition and quadratic problems with dimensions 800 to 10,000. This finding, to the best of our knowledge, is the first computational evidence of the effectiveness of these approximation algorithms for solving large-scale problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
组合优化和二次优化的混合线性和半定规划
我们使用半定松弛来逼近线性、二次和布尔约束下的组合和二次优化问题。我们提出了一种对偶势约简算法,并展示了如何利用各种问题的稀疏结构。结合随机化和启发式方法,我们报告了近似图划分和二次问题的计算结果,维数为800到10,000。据我们所知,这一发现是这些近似算法在解决大规模问题时有效性的第一个计算证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optimization Methods & Software
Optimization Methods & Software 工程技术-计算机:软件工程
CiteScore
4.50
自引率
0.00%
发文量
40
审稿时长
7 months
期刊介绍: Optimization Methods and Software publishes refereed papers on the latest developments in the theory and realization of optimization methods, with particular emphasis on the interface between software development and algorithm design. Topics include: Theory, implementation and performance evaluation of algorithms and computer codes for linear, nonlinear, discrete, stochastic optimization and optimal control. This includes in particular conic, semi-definite, mixed integer, network, non-smooth, multi-objective and global optimization by deterministic or nondeterministic algorithms. Algorithms and software for complementarity, variational inequalities and equilibrium problems, and also for solving inverse problems, systems of nonlinear equations and the numerical study of parameter dependent operators. Various aspects of efficient and user-friendly implementations: e.g. automatic differentiation, massively parallel optimization, distributed computing, on-line algorithms, error sensitivity and validity analysis, problem scaling, stopping criteria and symbolic numeric interfaces. Theoretical studies with clear potential for applications and successful applications of specially adapted optimization methods and software to fields like engineering, machine learning, data mining, economics, finance, biology, or medicine. These submissions should not consist solely of the straightforward use of standard optimization techniques.
期刊最新文献
Superlinear convergence of an interior point algorithm on linear semi-definite feasibility problems Automatic source code generation for deterministic global optimization with parallel architectures A neurodynamic approach for a class of pseudoconvex semivectorial bilevel optimization problems An investigation of stochastic trust-region based algorithms for finite-sum minimization A trust-region scheme for constrained multi-objective optimization problems with superlinear convergence property
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1