{"title":"Millimeter Wave Thickness Evaluation of Thermal Barrier Coatings (TBCs) Using Open-Ended Waveguide Probes","authors":"A. Case, M.T. Al Qaseer, R. Zoughi","doi":"10.1080/09349847.2023.2180122","DOIUrl":null,"url":null,"abstract":"ABSTRACT Nondestructive testing (NDT) of thermal barrier coatings (TBCs) is a critical and ongoing topic of research and development. In particular, inspection techniques that determine the thickness of ceramic topcoat and thermally grown oxide (TGO) are of interest. This work investigates the utility of open-ended rectangular waveguide probes in the millimeter wave frequency range of 26.5–110 GHz for evaluation of topcoat and TGO thicknesses through a compressive set of electromagnetic (EM) simulations. In addition, these EM simulations are used to illustrate the influence of probe size and TBC substrate curvature on the complex reflection coefficient properties and the subsequent thickness estimation. The impact of volumetric porosity level on the same is also investigated. A standing-wave probe at V-band (50–75 GHz) is constructed and used to measure the topcoat thickness on three button-type TBC samples. This probe eliminates the need for using expensive and bulky vector network analyzers (VNA), which is quite desirous from a practical point-of-view. The experimental results indicate the capability of estimating the topcoat thickness to within ±15 μm (0.6 mils).","PeriodicalId":54493,"journal":{"name":"Research in Nondestructive Evaluation","volume":"83 1","pages":"22 - 37"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09349847.2023.2180122","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT Nondestructive testing (NDT) of thermal barrier coatings (TBCs) is a critical and ongoing topic of research and development. In particular, inspection techniques that determine the thickness of ceramic topcoat and thermally grown oxide (TGO) are of interest. This work investigates the utility of open-ended rectangular waveguide probes in the millimeter wave frequency range of 26.5–110 GHz for evaluation of topcoat and TGO thicknesses through a compressive set of electromagnetic (EM) simulations. In addition, these EM simulations are used to illustrate the influence of probe size and TBC substrate curvature on the complex reflection coefficient properties and the subsequent thickness estimation. The impact of volumetric porosity level on the same is also investigated. A standing-wave probe at V-band (50–75 GHz) is constructed and used to measure the topcoat thickness on three button-type TBC samples. This probe eliminates the need for using expensive and bulky vector network analyzers (VNA), which is quite desirous from a practical point-of-view. The experimental results indicate the capability of estimating the topcoat thickness to within ±15 μm (0.6 mils).
期刊介绍:
Research in Nondestructive Evaluation® is the archival research journal of the American Society for Nondestructive Testing, Inc. RNDE® contains the results of original research in all areas of nondestructive evaluation (NDE). The journal covers experimental and theoretical investigations dealing with the scientific and engineering bases of NDE, its measurement and methodology, and a wide range of applications to materials and structures that relate to the entire life cycle, from manufacture to use and retirement.
Illustrative topics include advances in the underlying science of acoustic, thermal, electrical, magnetic, optical and ionizing radiation techniques and their applications to NDE problems. These problems include the nondestructive characterization of a wide variety of material properties and their degradation in service, nonintrusive sensors for monitoring manufacturing and materials processes, new techniques and combinations of techniques for detecting and characterizing hidden discontinuities and distributed damage in materials, standardization concepts and quantitative approaches for advanced NDE techniques, and long-term continuous monitoring of structures and assemblies. Of particular interest is research which elucidates how to evaluate the effects of imperfect material condition, as quantified by nondestructive measurement, on the functional performance.