Anomaly Detection Algorithms in Financial Data

Abhisu Jain, Mayank Arora, Anoushka Mehra, Aviva Munshi
{"title":"Anomaly Detection Algorithms in Financial Data","authors":"Abhisu Jain, Mayank Arora, Anoushka Mehra, Aviva Munshi","doi":"10.35940/ijeat.e2598.0610521","DOIUrl":null,"url":null,"abstract":"The main aim of this project is to understand and apply\nthe separate approach to classify fraudulent transactions in a\ndatabase using the Isolation forest algorithm and LOF algorithm\ninstead of the generic Random Forest approach. The model will be\nable to identify transactions with greater accuracy and we will\nwork towards a more optimal solution by comparing both\napproaches. The problem of detecting credit card fraud involves\nmodelling past credit card purchases with the perception of those\nthat turned out to be fraud. Then, this model is used to determine\nwhether or not a new transaction is fraudulent. The objective of\nthe project here is to identify 100% of the fraudulent transactions\nwhile mitigating the incorrect classifications offraud.","PeriodicalId":23601,"journal":{"name":"VOLUME-8 ISSUE-10, AUGUST 2019, REGULAR ISSUE","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VOLUME-8 ISSUE-10, AUGUST 2019, REGULAR ISSUE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35940/ijeat.e2598.0610521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The main aim of this project is to understand and apply the separate approach to classify fraudulent transactions in a database using the Isolation forest algorithm and LOF algorithm instead of the generic Random Forest approach. The model will be able to identify transactions with greater accuracy and we will work towards a more optimal solution by comparing both approaches. The problem of detecting credit card fraud involves modelling past credit card purchases with the perception of those that turned out to be fraud. Then, this model is used to determine whether or not a new transaction is fraudulent. The objective of the project here is to identify 100% of the fraudulent transactions while mitigating the incorrect classifications offraud.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金融数据中的异常检测算法
本项目的主要目的是理解和应用使用隔离森林算法和LOF算法对数据库中的欺诈交易进行分类的单独方法,而不是通用的随机森林方法。该模型将能够更准确地识别交易,我们将通过比较两种方法来寻求更优的解决方案。检测信用卡欺诈的问题涉及对过去的信用卡购买行为进行建模,并对那些最终被证明是欺诈行为的行为进行感知。然后,该模型用于确定新交易是否具有欺诈性。这里的项目目标是识别100%的欺诈性交易,同时减少错误分类欺诈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cycling Trends in Scotland during the Early Phase of the COVID Pandemic 'Unity in Diversity': Centralised British Identity in the Post-War Work of Robert Colquhoun and William Scott Health modelling of transport in low-and-middle income countries: A case study of New Delhi, India Global Diversity in Higher Education Workforces: Towards Openness Modern Indian Utopian Art and Literature: An Introduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1