Identification of cantharidin as a drug candidate for glioblastoma by using a Connectivity Map–based approach

Zhiwei Qiao, T. Kondo
{"title":"Identification of cantharidin as a drug candidate for glioblastoma by using a Connectivity Map–based approach","authors":"Zhiwei Qiao, T. Kondo","doi":"10.2198/JELECTROPH.63.9","DOIUrl":null,"url":null,"abstract":"Glioblastoma (GBM) is the most common brain tumor in adults. Although the surgical and chemoradiotherapy approaches for treatment have improved, the prognosis of patients with GBM is still poor and novel drugs are urgently required. Therefore, we investigated small molecular inhibitors to target GBM on the basis of gene expression data by using a Connectivity Map (CMAP)–based approach. Using meta-analysis performed with publically available gene expression data, we identified the gene expression signature of GBM. The CMAP analysis identified 15 candidate drugs for GBM treatment. We confirmed the anticancer cell proliferation activity of cantharidin as one of the top 15 drugs with high negative enrichment scores in CMAP analysis by using GBM cell lines. Our results indicate the potential utility of CMAP to discover the potent drugs in the GBM treatment. This approach can be applied to other malignancies than GBM.","PeriodicalId":15059,"journal":{"name":"Journal of capillary electrophoresis","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of capillary electrophoresis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2198/JELECTROPH.63.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Glioblastoma (GBM) is the most common brain tumor in adults. Although the surgical and chemoradiotherapy approaches for treatment have improved, the prognosis of patients with GBM is still poor and novel drugs are urgently required. Therefore, we investigated small molecular inhibitors to target GBM on the basis of gene expression data by using a Connectivity Map (CMAP)–based approach. Using meta-analysis performed with publically available gene expression data, we identified the gene expression signature of GBM. The CMAP analysis identified 15 candidate drugs for GBM treatment. We confirmed the anticancer cell proliferation activity of cantharidin as one of the top 15 drugs with high negative enrichment scores in CMAP analysis by using GBM cell lines. Our results indicate the potential utility of CMAP to discover the potent drugs in the GBM treatment. This approach can be applied to other malignancies than GBM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于连接图的方法鉴定斑蝥素作为胶质母细胞瘤的候选药物
胶质母细胞瘤(GBM)是成人最常见的脑肿瘤。虽然手术和放化疗的治疗方法有所改善,但GBM患者的预后仍然很差,迫切需要新的药物。因此,我们利用基于连接图(CMAP)的方法,在基因表达数据的基础上研究靶向GBM的小分子抑制剂。利用公开的基因表达数据进行荟萃分析,我们确定了GBM的基因表达特征。CMAP分析确定了15种治疗GBM的候选药物。我们利用GBM细胞系,证实了斑蝥素是CMAP分析中负富集评分最高的15种药物之一。我们的结果表明CMAP在发现治疗GBM的有效药物方面具有潜在的效用。这种方法可以应用于除GBM以外的其他恶性肿瘤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electrophoretic extraction of protein complexes after separation and detection by a combined method of non-denaturing two-dimensional electrophoresis and reversible staining Use of Escherichia coli expression system for analyzing kinase motifs Proteomic analysis of spheroids of rhabdomyosarcoma cells cultured with decellularized muscle extracts Drug screening and kinase activity profiling of a novel patient-derived cell line of clear cell ovarian carcinoma Proteogenomic approach to drug targets in osteosarcomas with different original sites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1