{"title":"Experimental Investigations of Al-Cr3C2 Composite Preform Densification and Deformation","authors":"Naga Venkata Srinivas Borra, Veera Venkata Krishna Prasad Davuluri","doi":"10.18280/acsm.460403","DOIUrl":null,"url":null,"abstract":"This investigation on strain hardening, densification and workability of the Sintered aluminium- Chromium Carbide composition of (Al-Cr3C2 of 2, 4 and 6%) preforms subjected to upsetting were investigated in this research. Industrial practitioners needed the workability data and densification mechanisms to plan and envisage the failure strains. In the current study, under triaxial stress state conditions Al-Cr3C2 preform with primary preform densities and various aspect ratios were compressed. Strain hardening, densification behaviors of aluminium- Chromium Carbide be investigated by gradually increasing the load till the fracture occurs. The outcome of adding Cr3C2 to Al and the impact of aspect ratio on formability was also extensively investigated. We looked at the parameters of stress ratio, instant varying strain rate, work hardening exponent, instantaneous density coefficient and densification attained.","PeriodicalId":7877,"journal":{"name":"Annales de Chimie - Science des Matériaux","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de Chimie - Science des Matériaux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/acsm.460403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This investigation on strain hardening, densification and workability of the Sintered aluminium- Chromium Carbide composition of (Al-Cr3C2 of 2, 4 and 6%) preforms subjected to upsetting were investigated in this research. Industrial practitioners needed the workability data and densification mechanisms to plan and envisage the failure strains. In the current study, under triaxial stress state conditions Al-Cr3C2 preform with primary preform densities and various aspect ratios were compressed. Strain hardening, densification behaviors of aluminium- Chromium Carbide be investigated by gradually increasing the load till the fracture occurs. The outcome of adding Cr3C2 to Al and the impact of aspect ratio on formability was also extensively investigated. We looked at the parameters of stress ratio, instant varying strain rate, work hardening exponent, instantaneous density coefficient and densification attained.