False Fire Alarm Detection Using Data Mining Techniques

IF 0.6 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Decision Support System Technology Pub Date : 2020-10-01 DOI:10.4018/IJDSST.2020100102
R. Zafar, Shah Zaib, Muhammad Asif
{"title":"False Fire Alarm Detection Using Data Mining Techniques","authors":"R. Zafar, Shah Zaib, Muhammad Asif","doi":"10.4018/IJDSST.2020100102","DOIUrl":null,"url":null,"abstract":"In the era of smart home technology, early warning systems and emergency services are inevitable. To make smart homes safer, early fire alarm systems can play a significant role. Smart homes usually utilize communication, sensors, actuators, and other technologies to provide a safe and smart environment. This research work introduced a model for the fire alarm system and designed a fire alarm detection (FAD) simulator to produce a synthetic dataset. The designed simulator utilizes a variety of sensors (temperature, gas, and humidity) to simulate fire alarm scenarios based on real-world data. The produced data is investigated and analyzed to classify the possible fire behaviors based on key assumptions taken from real-world scenarios. Different classification models are used to determine an optimal classifier for fire detection. The proposed technique can identify the false alarms based on parameters like temperature, smoke, and gas values of different sensors embedded in a fire alarm detection simulator.","PeriodicalId":42414,"journal":{"name":"International Journal of Decision Support System Technology","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Decision Support System Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJDSST.2020100102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 4

Abstract

In the era of smart home technology, early warning systems and emergency services are inevitable. To make smart homes safer, early fire alarm systems can play a significant role. Smart homes usually utilize communication, sensors, actuators, and other technologies to provide a safe and smart environment. This research work introduced a model for the fire alarm system and designed a fire alarm detection (FAD) simulator to produce a synthetic dataset. The designed simulator utilizes a variety of sensors (temperature, gas, and humidity) to simulate fire alarm scenarios based on real-world data. The produced data is investigated and analyzed to classify the possible fire behaviors based on key assumptions taken from real-world scenarios. Different classification models are used to determine an optimal classifier for fire detection. The proposed technique can identify the false alarms based on parameters like temperature, smoke, and gas values of different sensors embedded in a fire alarm detection simulator.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于数据挖掘技术的火灾虚假报警检测
在智能家居技术时代,预警系统和应急服务是不可避免的。为了使智能家居更安全,早期火灾报警系统可以发挥重要作用。智能家居通常利用通信、传感器、执行器和其他技术来提供安全和智能的环境。本文介绍了火灾报警系统的模型,并设计了火灾报警检测模拟器来生成合成数据集。设计的模拟器利用各种传感器(温度、气体和湿度)来模拟基于真实世界数据的火灾报警场景。对生成的数据进行调查和分析,根据现实场景中的关键假设对可能的火灾行为进行分类。使用不同的分类模型来确定火灾探测的最佳分类器。该方法可以根据火灾报警检测模拟器中嵌入的不同传感器的温度、烟雾和气体值等参数来识别误报警。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Decision Support System Technology
International Journal of Decision Support System Technology COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
2.20
自引率
18.20%
发文量
40
期刊最新文献
A Novel Query Method for Spatial Database Based on Improved K-Nearest Neighbor Algorithm Analysis and Evaluation of Roadblocks Hindering Lean-Green and Industry 4.0 Practices in Indian Manufacturing Industries Developing Fuzzy-AHP-Integrated Hybrid MCDM System of COPRAS-ARAS for Solving an Industrial Robot Selection Problem Generalized Parametric Intuitionistic Fuzzy Measures Based on Trigonometric Functions for Improved Decision-Making Problem An Efficient Method to Decide the Malicious Traffic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1