Real-time volt/var optimization for distribution systems with photovoltaic integration

Yan Chen, B. Luckey, J. Wigmore, M. Davidson, Andrea Benigni
{"title":"Real-time volt/var optimization for distribution systems with photovoltaic integration","authors":"Yan Chen, B. Luckey, J. Wigmore, M. Davidson, Andrea Benigni","doi":"10.1109/IECON.2017.8216447","DOIUrl":null,"url":null,"abstract":"This paper presents a two-stage optimization approach to mitigate the rapid voltage fluctuations and minimize the power losses of distribution systems due to the high penetration of photovoltaic (PV) generation. The first stage is a day-ahead optimal strategy which aims to minimize the total voltage deviations and power losses within the constraints of the daily maximum allowable number of operations of the on-load tap changers (OLTCs) and shunt capacitors (SCs). The second stage is a real-time inverter reactive power control to compensate for the uncertainties of PV output and load demand. As a part of the real-time control, an artificial neural network (ANN) approach is used to estimate the system states. In both stages, the optimization problems are formulated as nonlinear optimization problems and solved with direct search algorithms. The real-time optimization method is tested using a Hardware-In-the-Loop (HIL) simulation platform. A modified IEEE 34-node test feeder is applied to demonstrate the effectiveness of the proposed approach.","PeriodicalId":13098,"journal":{"name":"IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society","volume":"126 1","pages":"2658-2663"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.2017.8216447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents a two-stage optimization approach to mitigate the rapid voltage fluctuations and minimize the power losses of distribution systems due to the high penetration of photovoltaic (PV) generation. The first stage is a day-ahead optimal strategy which aims to minimize the total voltage deviations and power losses within the constraints of the daily maximum allowable number of operations of the on-load tap changers (OLTCs) and shunt capacitors (SCs). The second stage is a real-time inverter reactive power control to compensate for the uncertainties of PV output and load demand. As a part of the real-time control, an artificial neural network (ANN) approach is used to estimate the system states. In both stages, the optimization problems are formulated as nonlinear optimization problems and solved with direct search algorithms. The real-time optimization method is tested using a Hardware-In-the-Loop (HIL) simulation platform. A modified IEEE 34-node test feeder is applied to demonstrate the effectiveness of the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光伏集成配电系统的实时电压/无功优化
本文提出了一种两阶段优化方法,以缓解由于光伏发电的高渗透率而导致的快速电压波动和最大限度地减少配电系统的功率损耗。第一阶段是日前优化策略,其目的是在有载分接开关(oltc)和并联电容器(sc)的每日最大允许操作次数的约束下,将总电压偏差和功率损失最小化。第二阶段是逆变器无功功率实时控制,以补偿光伏输出和负荷需求的不确定性。作为实时控制的一部分,采用人工神经网络(ANN)方法对系统状态进行估计。在这两个阶段,优化问题都被表述为非线性优化问题,并使用直接搜索算法求解。在硬件在环仿真平台上对实时优化方法进行了测试。应用改进的IEEE 34节点测试馈线验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of the influence of train operation diagram adjustment on the working state and life of IGBT module of traction converter Real-time pothole detection system on vehicle using improved YOLOv5 in Malaysia an Interval Multiple Models Approach for Uncertain Nonlinear Systems Estimation Enhancement of DC MCB Performance using Power Semiconductor Devices Blended Learning for Remote Software Simulation Laboratory of a Solar Power System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1