Jiahui Jiao, Benjun Ye, Yue Zhao, Rebecca J. Stones, G. Wang, X. Liu, Shaoyan Wang, Gu-Ya Xie
{"title":"Detecting TCP-Based DDoS Attacks in Baidu Cloud Computing Data Centers","authors":"Jiahui Jiao, Benjun Ye, Yue Zhao, Rebecca J. Stones, G. Wang, X. Liu, Shaoyan Wang, Gu-Ya Xie","doi":"10.1109/SRDS.2017.37","DOIUrl":null,"url":null,"abstract":"Cloud computing data centers have become one of the most important infrastructures in the big-data era. When considering the security of data centers, distributed denial of service (DDoS) attacks are one of the most serious problems. Here we consider DDoS attacks leveraging TCP traffic, which are increasingly rampant but are difficult to detect. To detect DDoS attacks, we identify two attack modes: fixed source IP attacks (FSIA) and random source IP attacks (RSIA), based on the source IP address used by attackers. We also propose a real-time TCP-based DDoS detection approach, which extracts effective features of TCP traffic and distinguishes malicious traffic from normal traffic by two decision tree classifiers. We evaluate the proposed approach using a simulated dataset and real datasets, including the ISCX IDS dataset, the CAIDA DDoS Attack 2007 dataset, and a Baidu Cloud Computing Platform dataset. Experimental results show that the proposed approach can achieve attack detection rate higher than 99% with a false alarm rate less than 1%. This approach will be deployed to the victim-end DDoS defense system in Baidu cloud computing data center.","PeriodicalId":6475,"journal":{"name":"2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SRDS.2017.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Cloud computing data centers have become one of the most important infrastructures in the big-data era. When considering the security of data centers, distributed denial of service (DDoS) attacks are one of the most serious problems. Here we consider DDoS attacks leveraging TCP traffic, which are increasingly rampant but are difficult to detect. To detect DDoS attacks, we identify two attack modes: fixed source IP attacks (FSIA) and random source IP attacks (RSIA), based on the source IP address used by attackers. We also propose a real-time TCP-based DDoS detection approach, which extracts effective features of TCP traffic and distinguishes malicious traffic from normal traffic by two decision tree classifiers. We evaluate the proposed approach using a simulated dataset and real datasets, including the ISCX IDS dataset, the CAIDA DDoS Attack 2007 dataset, and a Baidu Cloud Computing Platform dataset. Experimental results show that the proposed approach can achieve attack detection rate higher than 99% with a false alarm rate less than 1%. This approach will be deployed to the victim-end DDoS defense system in Baidu cloud computing data center.