{"title":"Translational Dynamics of Imidazolium-Based Ionic Liquids in Acetonitrile Solutions","authors":"F. Demmel, W. Howells","doi":"10.3390/liquids3020015","DOIUrl":null,"url":null,"abstract":"The dynamics of pure ionic liquids and solutions with acetonitrile have been investigated through quasielastic neutron scattering (QENS). The translational diffusive motion of the 1-butyl-3-methyl-imidazolium cation was revealed as a function of concentration and temperature. The diffusion coefficients obtained are in reasonably good agreement with molecular dynamics (MD) computer simulations based on a classical potential. The diffusive mobility of the cation dramatically increases when adding acetonitrile. This increase in diffusivity is directly related to a maximum in conductivity of these ionic liquid solutions and might pave the way for new design of electrolytes. The translational motions in pure ionic liquids are too slow to be resolved by our experiment. However, localized motion resembling rotation on a sphere of the measured proton signal could be identified in the pure ionic liquids.","PeriodicalId":20094,"journal":{"name":"Physics and Chemistry of Liquids","volume":"57 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Liquids","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/liquids3020015","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The dynamics of pure ionic liquids and solutions with acetonitrile have been investigated through quasielastic neutron scattering (QENS). The translational diffusive motion of the 1-butyl-3-methyl-imidazolium cation was revealed as a function of concentration and temperature. The diffusion coefficients obtained are in reasonably good agreement with molecular dynamics (MD) computer simulations based on a classical potential. The diffusive mobility of the cation dramatically increases when adding acetonitrile. This increase in diffusivity is directly related to a maximum in conductivity of these ionic liquid solutions and might pave the way for new design of electrolytes. The translational motions in pure ionic liquids are too slow to be resolved by our experiment. However, localized motion resembling rotation on a sphere of the measured proton signal could be identified in the pure ionic liquids.
期刊介绍:
Physics and Chemistry of Liquids publishes experimental and theoretical papers, letters and reviews aimed at furthering the understanding of the liquid state. The coverage embraces the whole spectrum of liquids, from simple monatomic liquids and their mixtures, through charged liquids (e.g. ionic melts, liquid metals and their alloys, ions in aqueous solution, and metal-electrolyte systems) to molecular liquids of all kinds. It also covers quantum fluids and superfluids, such as Fermi and non-Fermi liquids, superconductors, Bose-Einstein condensates, correlated electron or spin assemblies.
By publishing papers on physical aspects of the liquid state as well as those with a mainly chemical focus, Physics and Chemistry of Liquids provides a medium for the publication of interdisciplinary papers on liquids serving its broad international readership of physicists and chemists.