L. Price, Zöe Jones, A. Nearchou, G. Stenning, Daniel W. Nye, A. Sartbaeva
{"title":"The Effect of Cation Exchange on the Pore Geometry of Zeolite L","authors":"L. Price, Zöe Jones, A. Nearchou, G. Stenning, Daniel W. Nye, A. Sartbaeva","doi":"10.3390/appliedchem2030011","DOIUrl":null,"url":null,"abstract":"Zeolites with the LTL framework topology are attractive materials for use in optoelectronics, gas adsorption and as chemical reactors. This is due to their unique, one-dimensional (1D) channel systems which are large enough to act as hosts for organic dye molecules and other guest materials. Here, we use high-resolution X-ray diffraction to show the effect of cation exchange on the pore geometry of LTL-type zeolites. The nature of the exchanging cation is shown to influence the free access diameter, volume and water content of the 12-ring (12R) channel systems. As such, cation exchange can be used to tune the molecular sieving and adsorption properties of LTL-type zeolites. This offers new possibilities for these materials in technologically relevant applications.","PeriodicalId":8123,"journal":{"name":"AppliedChem","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AppliedChem","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/appliedchem2030011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Zeolites with the LTL framework topology are attractive materials for use in optoelectronics, gas adsorption and as chemical reactors. This is due to their unique, one-dimensional (1D) channel systems which are large enough to act as hosts for organic dye molecules and other guest materials. Here, we use high-resolution X-ray diffraction to show the effect of cation exchange on the pore geometry of LTL-type zeolites. The nature of the exchanging cation is shown to influence the free access diameter, volume and water content of the 12-ring (12R) channel systems. As such, cation exchange can be used to tune the molecular sieving and adsorption properties of LTL-type zeolites. This offers new possibilities for these materials in technologically relevant applications.