Ordinal Depth Classification Using Region-based Self-attention

Minh-Hieu Phan, S. L. Phung, A. Bouzerdoum
{"title":"Ordinal Depth Classification Using Region-based Self-attention","authors":"Minh-Hieu Phan, S. L. Phung, A. Bouzerdoum","doi":"10.1109/ICPR48806.2021.9412477","DOIUrl":null,"url":null,"abstract":"Depth perception is essential for scene understanding, autonomous navigation and augmented reality. Depth estimation from a single 2D image is challenging due to the lack of reliable cues, e.g. stereo correspondences and motions. Modern approaches exploit multi-scale feature extraction to provide more powerful representations for deep networks. However, these studies only use simple addition or concatenation to combine the extracted multi-scale features. This paper proposes a novel region-based self-attention (rSA) unit for effective feature fusions. The rSA recalibrates the multi-scale responses by explicitly modelling the dependency between channels in separate image regions. We discretize continuous depths to formulate an ordinal depth classification problem in which the relative order between categories is preserved. The experiments are performed on a dataset of 4410 RGB-D images, captured in outdoor environments at the University of Wollongong's campus. The proposed module improves the models on small-sized datasets by 22% to 40%.","PeriodicalId":6783,"journal":{"name":"2020 25th International Conference on Pattern Recognition (ICPR)","volume":"84 1","pages":"3620-3627"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th International Conference on Pattern Recognition (ICPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR48806.2021.9412477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Depth perception is essential for scene understanding, autonomous navigation and augmented reality. Depth estimation from a single 2D image is challenging due to the lack of reliable cues, e.g. stereo correspondences and motions. Modern approaches exploit multi-scale feature extraction to provide more powerful representations for deep networks. However, these studies only use simple addition or concatenation to combine the extracted multi-scale features. This paper proposes a novel region-based self-attention (rSA) unit for effective feature fusions. The rSA recalibrates the multi-scale responses by explicitly modelling the dependency between channels in separate image regions. We discretize continuous depths to formulate an ordinal depth classification problem in which the relative order between categories is preserved. The experiments are performed on a dataset of 4410 RGB-D images, captured in outdoor environments at the University of Wollongong's campus. The proposed module improves the models on small-sized datasets by 22% to 40%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于区域自关注的有序深度分类
深度感知对于场景理解、自主导航和增强现实至关重要。由于缺乏可靠的线索,例如立体对应和运动,从单个2D图像进行深度估计是具有挑战性的。现代方法利用多尺度特征提取为深度网络提供更强大的表示。然而,这些研究仅使用简单的加法或串联来组合提取的多尺度特征。提出了一种新的基于区域的自关注(rSA)单元,用于有效的特征融合。rSA通过明确地模拟不同图像区域通道之间的依赖性来重新校准多尺度响应。我们将连续深度离散化,得到一个保持类别间相对顺序的有序深度分类问题。实验是在一个4410张RGB-D图像的数据集上进行的,这些图像是在伍伦贡大学校园的户外环境中拍摄的。该模型在小型数据集上的性能提高了22% ~ 40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trajectory representation learning for Multi-Task NMRDP planning Semantic Segmentation Refinement Using Entropy and Boundary-guided Monte Carlo Sampling and Directed Regional Search A Randomized Algorithm for Sparse Recovery An Empirical Bayes Approach to Topic Modeling To Honor our Heroes: Analysis of the Obituaries of Australians Killed in Action in WWI and WWII
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1