Hydrostatic compression and pressure phase transition of major Portland cement constituents – Insights via molecular dynamics modeling

Ingrid M. Padilla Espinosa, Nirmalay Barua, Ram V. Mohan
{"title":"Hydrostatic compression and pressure phase transition of major Portland cement constituents – Insights via molecular dynamics modeling","authors":"Ingrid M. Padilla Espinosa,&nbsp;Nirmalay Barua,&nbsp;Ram V. Mohan","doi":"10.1016/j.cement.2021.100017","DOIUrl":null,"url":null,"abstract":"<div><p>The complex composite material cement paste (CP) is under high pressures in underwater applications and when impact loading occurs. The mechanical behavior of cement paste to hydrostatic compression results from mechanical deformations of each phase, including unhydrated and hydrated minerals. Molecular Dynamics was used to study the atomistic deformation of individual unhydrated cement phases with increasing hydrostatic pressures. The pressure-specific volume Birch-Murnaghan equation of state (EoS) and the bulk modulus at zero pressure were determined for each phase. Results show that the bulk modulus and compressibility are pressure dependent. For tricalcium silicate (C<sub>3</sub>S), dicalcium silicate (C<sub>2</sub>S), and tricalcium aluminate (C<sub>3</sub>A), the bulk modulus increases, while the volume compression decreases with increasing pressure. The C<sub>3</sub>S and C<sub>3</sub>A phases are stable during hydrostatic compression and exhibit isotropic behavior. The C<sub>2</sub>S phase is not stable and shows anisotropic behavior. These results explain the effect of unreacted cement clinkers on cement paste mechanical behavior under high pressure based on the response of individual phases.</p></div>","PeriodicalId":100225,"journal":{"name":"CEMENT","volume":"7 ","pages":"Article 100017"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666549221000141/pdfft?md5=a33f95fab9df10e800344575a682d53e&pid=1-s2.0-S2666549221000141-main.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEMENT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666549221000141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The complex composite material cement paste (CP) is under high pressures in underwater applications and when impact loading occurs. The mechanical behavior of cement paste to hydrostatic compression results from mechanical deformations of each phase, including unhydrated and hydrated minerals. Molecular Dynamics was used to study the atomistic deformation of individual unhydrated cement phases with increasing hydrostatic pressures. The pressure-specific volume Birch-Murnaghan equation of state (EoS) and the bulk modulus at zero pressure were determined for each phase. Results show that the bulk modulus and compressibility are pressure dependent. For tricalcium silicate (C3S), dicalcium silicate (C2S), and tricalcium aluminate (C3A), the bulk modulus increases, while the volume compression decreases with increasing pressure. The C3S and C3A phases are stable during hydrostatic compression and exhibit isotropic behavior. The C2S phase is not stable and shows anisotropic behavior. These results explain the effect of unreacted cement clinkers on cement paste mechanical behavior under high pressure based on the response of individual phases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硅酸盐水泥主要成分的静水压缩和压力相变——通过分子动力学建模的见解
复杂复合材料水泥浆体(CP)在水下和冲击载荷作用下承受高压。水泥浆体在静水压力下的力学行为是由各相(包括未水化矿物和水化矿物)的力学变形决定的。采用分子动力学方法研究了静水压力增大时单体不水化水泥相的原子变形。测定了各相的压力比体积Birch-Murnaghan状态方程(EoS)和零压力下的体积模量。结果表明,体积模量和压缩率与压力有关。对于硅酸三钙(C3S)、硅酸二钙(C2S)和铝酸三钙(C3A),随着压力的增加,体积模量增大,而体积压缩量减小。C3S和C3A相在静压过程中表现出稳定的各向同性。C2S相不稳定,表现出各向异性。这些结果解释了未反应的水泥熟料在高压下对水泥浆体力学行为的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Downstream processing of End-of-Life concrete for the recovery of high-quality cementitious fractions The impact of relative humidity on the nanoindentation relaxation in calcium silicate hydrates Low-grade fly ash in portland cement blends: A decoupling approach to evaluate reactivity and hydration effects Accelerating effect of low replacements of carbonaceous materials in cement paste and mortar Measuring concrete air-entraining admixture adsorption on coal ash using three-phase equilibrium and fluorescence-based methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1