{"title":"Computational tools for studying gene regulation in the 3-dimensional genome","authors":"Kai Tan","doi":"10.1109/BIBM.2016.7822483","DOIUrl":null,"url":null,"abstract":"Determining the 3-dimensional structure of the genome and its impact on gene expression has been a long-standing question in cell biology. Recent development in mapping technologies for chromatin interactions has led to a rapid increase in this kind of interaction data, revealing a hierarchical organization of the 3D genome, from large compartments spanning multiple chromosomes, to mega-base-sized topological associated chromatin domains, to individual long-range chromatin loops mediating enhancer-promoter interactions. With the explosion of chromatin interaction data, there is a pressing need for analytical tools. In this talk, I will describe two computational algorithms for analyzing chromatin interaction data at different scales. I will first present a fast algorithm for identifying large-scale, hierarchical chromatin domains. I will demonstrate how the algorithm enables studies of chromatin subdomains in gene regulation. Accurate knowledge of enhancer-promoter interactions is a pre-requisite to understanding regulatory output of enhancers. I will present an algorithm for predicting enhancer-promoter interactions by integrating genomic, transcriptomic, and epigenomic data. Using data from multiple human cell types, I will demonstrate how the algorithm can help decipher the mechanisms underlying enhancer-promoter communication.","PeriodicalId":73283,"journal":{"name":"IEEE International Conference on Bioinformatics and Biomedicine workshops. IEEE International Conference on Bioinformatics and Biomedicine","volume":"269 1","pages":"10"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Bioinformatics and Biomedicine workshops. IEEE International Conference on Bioinformatics and Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2016.7822483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Determining the 3-dimensional structure of the genome and its impact on gene expression has been a long-standing question in cell biology. Recent development in mapping technologies for chromatin interactions has led to a rapid increase in this kind of interaction data, revealing a hierarchical organization of the 3D genome, from large compartments spanning multiple chromosomes, to mega-base-sized topological associated chromatin domains, to individual long-range chromatin loops mediating enhancer-promoter interactions. With the explosion of chromatin interaction data, there is a pressing need for analytical tools. In this talk, I will describe two computational algorithms for analyzing chromatin interaction data at different scales. I will first present a fast algorithm for identifying large-scale, hierarchical chromatin domains. I will demonstrate how the algorithm enables studies of chromatin subdomains in gene regulation. Accurate knowledge of enhancer-promoter interactions is a pre-requisite to understanding regulatory output of enhancers. I will present an algorithm for predicting enhancer-promoter interactions by integrating genomic, transcriptomic, and epigenomic data. Using data from multiple human cell types, I will demonstrate how the algorithm can help decipher the mechanisms underlying enhancer-promoter communication.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在三维基因组中研究基因调控的计算工具
确定基因组的三维结构及其对基因表达的影响一直是细胞生物学中一个长期存在的问题。染色质相互作用制图技术的最新发展导致了这种相互作用数据的快速增加,揭示了3D基因组的分层组织,从跨越多个染色体的大隔间,到大碱基大小的拓扑相关染色质结构域,再到介导增强子-启动子相互作用的单个远程染色质环。随着染色质相互作用数据的爆炸式增长,人们迫切需要分析工具。在这次演讲中,我将描述两种用于分析不同尺度染色质相互作用数据的计算算法。我将首先提出一种快速算法,用于识别大规模、分层的染色质结构域。我将演示该算法如何使基因调控中的染色质亚域研究成为可能。增强子-启动子相互作用的准确知识是理解增强子调控输出的先决条件。我将提出一种算法,通过整合基因组、转录组和表观基因组数据来预测增强子-启动子相互作用。使用来自多种人类细胞类型的数据,我将演示该算法如何帮助破译增强子-启动子通信的潜在机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Diurnal Pain Classification in Critically Ill Patients using Machine Learning on Accelerometry and Analgesic Data. Transmission cluster characteristics of global, regional, and lineage-specific SARS-CoV-2 phylogenies. Document-level DDI relation extraction with document-entity embedding The Network Pharmacological Mechanism of Yizhiningshen Oral Liquid in the Treatment of Tic Disorders Study on the Medication Law of Traditional Chinese medicine treating Lumbago based on TCM electronic medical record
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1