Online Random Forests For Large-Scale Land-Use Classification From Polarimetric Sar Images

R. Hänsch, O. Hellwich
{"title":"Online Random Forests For Large-Scale Land-Use Classification From Polarimetric Sar Images","authors":"R. Hänsch, O. Hellwich","doi":"10.1109/IGARSS.2019.8898021","DOIUrl":null,"url":null,"abstract":"The deployment of numerous air- and space-borne remote sensing sensors as well as new data policies led to a tremendous increase of available data. While methods such as neural networks are trained by online or batch processing, i.e. keeping only parts of the data in the memory, other methods such as Random Forests require offline processing, i.e. keeping all data in the memory of the computer. The latter are therefore often trained on a small subset of a larger data set that is hoped to be representative instead of exploiting the information contained in all samples. This paper shows that Random Forests can be trained by batch processing too making their application to large data sets feasible without further constraints. The benefits of this training scheme are illustrated for the use case of land-use classification from PolSAR imagery.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"15 1","pages":"5808-5811"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8898021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The deployment of numerous air- and space-borne remote sensing sensors as well as new data policies led to a tremendous increase of available data. While methods such as neural networks are trained by online or batch processing, i.e. keeping only parts of the data in the memory, other methods such as Random Forests require offline processing, i.e. keeping all data in the memory of the computer. The latter are therefore often trained on a small subset of a larger data set that is hoped to be representative instead of exploiting the information contained in all samples. This paper shows that Random Forests can be trained by batch processing too making their application to large data sets feasible without further constraints. The benefits of this training scheme are illustrated for the use case of land-use classification from PolSAR imagery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于极化Sar图像的大尺度土地利用在线随机森林分类
大量空中和空间遥感传感器的部署以及新的数据政策导致了可用数据的大量增加。虽然神经网络等方法是通过在线或批处理来训练的,即只在内存中保留部分数据,但随机森林等其他方法需要离线处理,即将所有数据保存在计算机的内存中。因此,后者通常是在希望具有代表性的较大数据集的一小部分上进行训练,而不是利用所有样本中包含的信息。本文表明随机森林也可以通过批处理进行训练,使其在没有进一步约束的情况下应用于大型数据集是可行的。该训练方案的好处以PolSAR图像的土地利用分类为例进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Question Answering From Remote Sensing Images The Impact of Additive Noise on Polarimetric Radarsat-2 Data Covering Oil Slicks Edge-Convolution Point Net for Semantic Segmentation of Large-Scale Point Clouds Burn Severity Estimation in Northern Australia Tropical Savannas Using Radiative Transfer Model and Sentinel-2 Data The Truth About Ground Truth: Label Noise in Human-Generated Reference Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1