Recovery of Sobolev functions restricted to iid sampling

David Krieg, E. Novak, Mathias Sonnleitner
{"title":"Recovery of Sobolev functions restricted to iid sampling","authors":"David Krieg, E. Novak, Mathias Sonnleitner","doi":"10.1090/mcom/3763","DOIUrl":null,"url":null,"abstract":"We study Lq-approximation and integration for functions from the Sobolev space W s p (Ω) and compare optimal randomized (Monte Carlo) algorithms with algorithms that can only use iid sample points, uniformly distributed on the domain. The main result is that we obtain the same optimal rate of convergence if we restrict to iid sampling, a common assumption in learning and uncertainty quantification. The only exception is when p = q = ∞, where a logarithmic loss cannot be avoided.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"10 5 1","pages":"2715-2738"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We study Lq-approximation and integration for functions from the Sobolev space W s p (Ω) and compare optimal randomized (Monte Carlo) algorithms with algorithms that can only use iid sample points, uniformly distributed on the domain. The main result is that we obtain the same optimal rate of convergence if we restrict to iid sampling, a common assumption in learning and uncertainty quantification. The only exception is when p = q = ∞, where a logarithmic loss cannot be avoided.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
限定采样的Sobolev函数的恢复
我们研究了Sobolev空间W sp函数的lq逼近和积分(Ω),并比较了最优随机(Monte Carlo)算法与只能使用均匀分布在域上的iid样本点的算法。主要结果是,如果我们限制iid采样,我们可以获得相同的最优收敛速度,这是学习和不确定性量化中的一个常见假设。唯一的例外是当p = q =∞时,无法避免对数损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Full discretization error analysis of exponential integrators for semilinear wave equations Fast and stable augmented Levin methods for highly oscillatory and singular integrals Finite element/holomorphic operator function method for the transmission eigenvalue problem Algorithms for fundamental invariants and equivariants of finite groups An algorithm for Hodge ideals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1