Haiying Chen, A. Ding, Junfeng Dou, Lirong Cheng, Fuqiang Fan, Yongchao Du, Xiaona Liu
{"title":"Optimal Conditions for Biodegradation of Indeno (1,2,3-cd) Pyrene in Soil Slurry Reactors","authors":"Haiying Chen, A. Ding, Junfeng Dou, Lirong Cheng, Fuqiang Fan, Yongchao Du, Xiaona Liu","doi":"10.1109/ICBBE.2010.5517395","DOIUrl":null,"url":null,"abstract":"Soil slurry reactor technology is one of the effective methods for treating PAHs contaminated soil. In this paper, removal of high molecular weight PAHs, Indeno (1,2,3-cd) pyrene (Inp), was studied in soil slurry reactors with isolated bacteria from PAHs contaminated soil. The factors affecting Inp biodegradation and the optimal conditions were investigated using orthogonal experimental design (L9(34)). The highest degradation efficiency of Inp was 50.71% after the incubation of 12 days. The most significant influencing factors were aeration rate, water to soil ratio and salinity, while pH was less significant. The optimal conditions for Inp degradation in soil slurry reactor was: aeration rate 120L/h, water to soil ratio 2:1, salinity 10%, pH=6.","PeriodicalId":6396,"journal":{"name":"2010 4th International Conference on Bioinformatics and Biomedical Engineering","volume":"67 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 4th International Conference on Bioinformatics and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBBE.2010.5517395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Soil slurry reactor technology is one of the effective methods for treating PAHs contaminated soil. In this paper, removal of high molecular weight PAHs, Indeno (1,2,3-cd) pyrene (Inp), was studied in soil slurry reactors with isolated bacteria from PAHs contaminated soil. The factors affecting Inp biodegradation and the optimal conditions were investigated using orthogonal experimental design (L9(34)). The highest degradation efficiency of Inp was 50.71% after the incubation of 12 days. The most significant influencing factors were aeration rate, water to soil ratio and salinity, while pH was less significant. The optimal conditions for Inp degradation in soil slurry reactor was: aeration rate 120L/h, water to soil ratio 2:1, salinity 10%, pH=6.