PASSED: Calculate Power and Sample Size for Two Sample Tests

R J. Pub Date : 2021-01-01 DOI:10.32614/rj-2021-094
Jinpu Li, R. Knigge, Kaiyi Chen, E. Leary
{"title":"PASSED: Calculate Power and Sample Size for Two Sample Tests","authors":"Jinpu Li, R. Knigge, Kaiyi Chen, E. Leary","doi":"10.32614/rj-2021-094","DOIUrl":null,"url":null,"abstract":"Power and sample size estimation are critical aspects in study design to demonstrate minimized risk for subjects and to justify the allocation of time, money, and other resources. Researchers often work with response variables which take the form of various distributions. Here, we present an R package, PASSED, that allows flexibility with seven common distributions and multiple options to accommodate sample size or power analysis. The relevant statistical theory, calculations, and examples for each distribution using PASSED are discussed in this paper.","PeriodicalId":20974,"journal":{"name":"R J.","volume":"45 1","pages":"450"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"R J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/rj-2021-094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Power and sample size estimation are critical aspects in study design to demonstrate minimized risk for subjects and to justify the allocation of time, money, and other resources. Researchers often work with response variables which take the form of various distributions. Here, we present an R package, PASSED, that allows flexibility with seven common distributions and multiple options to accommodate sample size or power analysis. The relevant statistical theory, calculations, and examples for each distribution using PASSED are discussed in this paper.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过:计算两个样本测试的功率和样本量
功率和样本量估计是研究设计中的关键方面,以证明受试者的风险最小化,并证明时间、金钱和其他资源的分配是合理的。研究人员经常使用各种分布形式的响应变量。在这里,我们介绍了一个R包PASSED,它允许七个常见分布和多个选项的灵活性,以适应样本大小或功率分析。本文讨论了使用PASSED进行各种分布的相关统计理论、计算和实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalized Mosaic Plots in the \pkg{ggplot2} Framework populR: a Package for Population Downscaling in R Making Provenance Work for You SurvMetrics: An R package for Predictive Evaluation Metrics in Survival Analysis HostSwitch: An R Package to Simulate the Extent of Host-Switching by a Consumer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1