{"title":"Mechanical and Geometrical Tortuosities: Vanishing and Appearing Tortuosities","authors":"Robello Samuel, J. Lightfoot, W. Turner","doi":"10.2118/206188-ms","DOIUrl":null,"url":null,"abstract":"\n Tortuosity is one of the critical factors to be considered for complex directional well trajectories, complicated build rates, precise steering in thin reservoirs, and extended reach wells. This paper discusses the pitfalls of estimating tortuosity to quantify borehole quality and answers questions, such as whether the claimed benefits (i.e., enhanced drilling performance, improved hole cleaning, ease of running casing, and superior cement operations) can be fully attributed to reduced borehole tortuosity. Running casing may mask the tortuosity present in the as drilled open hole wellbore section. This vanishing tortuosity alters the apparent \"wellbore quality\" and the new tortuosity representative of the cased hole path may present new appearing tortuosity. Both vanishing and appearing tortuosity are generally neglected in engineering calculations.\n Conventional methods to calculate tortuosity are based on the predetermined shape of the trajectory using the minimum curvature method. Wellbore undulation (geometrical tortuosity) is determined using geometrical measurements such as inclination, azimuth, and calculated displacement; however, much of this wellbore undulation vanishes after the casing is run, and thus the cased off wellpath appears smoother. This apparent change in wellbore tortuosity results from the flexural stiffness and rigidity of the casing pipes, and the compression and tension loads along the length of the casing string. Acquiring a subsequent survey along the cased well path yields new inclinations, azimuths, and displacements. This new survey records wellpath undulations resulting from the casings path through the original open hole wellbore geometry and what we call tubular undulation (mechanical tortuosity) which is specific to the path and position of the casing within the wellbore. The smoothing of the wellpath resulting from the casing masking original wellbore tortuosity results in the original geometrical tortuosity vanishing while the new undulations resulting from the mechanical tortuosity of the casing causes additional tortuosity to appear. The comparison between the geometrical and mechanical tortuosity provides a method of quantifying the vanishing and appearing tortuosity.","PeriodicalId":10928,"journal":{"name":"Day 2 Wed, September 22, 2021","volume":"138 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, September 22, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/206188-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Tortuosity is one of the critical factors to be considered for complex directional well trajectories, complicated build rates, precise steering in thin reservoirs, and extended reach wells. This paper discusses the pitfalls of estimating tortuosity to quantify borehole quality and answers questions, such as whether the claimed benefits (i.e., enhanced drilling performance, improved hole cleaning, ease of running casing, and superior cement operations) can be fully attributed to reduced borehole tortuosity. Running casing may mask the tortuosity present in the as drilled open hole wellbore section. This vanishing tortuosity alters the apparent "wellbore quality" and the new tortuosity representative of the cased hole path may present new appearing tortuosity. Both vanishing and appearing tortuosity are generally neglected in engineering calculations.
Conventional methods to calculate tortuosity are based on the predetermined shape of the trajectory using the minimum curvature method. Wellbore undulation (geometrical tortuosity) is determined using geometrical measurements such as inclination, azimuth, and calculated displacement; however, much of this wellbore undulation vanishes after the casing is run, and thus the cased off wellpath appears smoother. This apparent change in wellbore tortuosity results from the flexural stiffness and rigidity of the casing pipes, and the compression and tension loads along the length of the casing string. Acquiring a subsequent survey along the cased well path yields new inclinations, azimuths, and displacements. This new survey records wellpath undulations resulting from the casings path through the original open hole wellbore geometry and what we call tubular undulation (mechanical tortuosity) which is specific to the path and position of the casing within the wellbore. The smoothing of the wellpath resulting from the casing masking original wellbore tortuosity results in the original geometrical tortuosity vanishing while the new undulations resulting from the mechanical tortuosity of the casing causes additional tortuosity to appear. The comparison between the geometrical and mechanical tortuosity provides a method of quantifying the vanishing and appearing tortuosity.