Mathematical analysis of an SIR network model with imperfect vaccination and varying size of population

Yao Hu, L. Min, Yongmei Su, Y. Kuang
{"title":"Mathematical analysis of an SIR network model with imperfect vaccination and varying size of population","authors":"Yao Hu, L. Min, Yongmei Su, Y. Kuang","doi":"10.1145/3036331.3036348","DOIUrl":null,"url":null,"abstract":"Epidemic Spreading is a major global health problem. Modeling epidemic spreading dynamics is important for understanding and controlling epidemic spreading, providing prevention strategies. This paper points out some flaws existing in the susceptible-infected - susceptible (SIS) model proposed by Safan and Rihan, and proposes a modified susceptible-infected-recovered (SIR) model on homogenous networks. It is proved that if the basic reproduction number Rv of the model is less than one, then the infection-free equilibrium of the model is globally asymptotically stable. On the other hand, if Rv of the model is more than one, the endemic equilibrium of the model is globally asymptotically stable. This paper also numerically predicts the effect of vaccination ratio on the size of HBV infected mainland Chinese population.","PeriodicalId":22356,"journal":{"name":"Tenth International Conference on Computer Modeling and Simulation (uksim 2008)","volume":"3 1","pages":"7-13"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tenth International Conference on Computer Modeling and Simulation (uksim 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3036331.3036348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Epidemic Spreading is a major global health problem. Modeling epidemic spreading dynamics is important for understanding and controlling epidemic spreading, providing prevention strategies. This paper points out some flaws existing in the susceptible-infected - susceptible (SIS) model proposed by Safan and Rihan, and proposes a modified susceptible-infected-recovered (SIR) model on homogenous networks. It is proved that if the basic reproduction number Rv of the model is less than one, then the infection-free equilibrium of the model is globally asymptotically stable. On the other hand, if Rv of the model is more than one, the endemic equilibrium of the model is globally asymptotically stable. This paper also numerically predicts the effect of vaccination ratio on the size of HBV infected mainland Chinese population.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不完全疫苗接种和人口规模变化的SIR网络模型的数学分析
流行病蔓延是一个重大的全球卫生问题。建立传染病传播动力学模型对于理解和控制传染病传播,提供预防策略具有重要意义。本文指出了Safan和Rihan提出的易感-感染-易感(susceptibility -infected- vulnerable, SIS)模型存在的一些缺陷,提出了一种改进的同质网络易感-感染-恢复(susceptibility -infected-recovered, SIR)模型。证明了如果模型的基本复制数Rv小于1,则模型的无感染平衡点是全局渐近稳定的。另一方面,如果模型的Rv大于1,则模型的局部平衡点是全局渐近稳定的。本文还对疫苗接种率对中国大陆HBV感染人群规模的影响进行了数值预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ICCMS 2022: The 14th International Conference on Computer Modeling and Simulation, Chongqing, China, June 24 - 26, 2022 ICCMS 2021: The 13th International Conference on Computer Modeling and Simulation, Melbourne, VIC, Australia, June 25 - 27, 2021 Wheelchair Navigation System using Node Combination Technique for People with Motor Disabilities Reaeration and Dispersion Coefficients Prediction for a River Flow by Implementing Machine Learning Algorithm on MIKE Dataset ICCMS '20: The 12th International Conference on Computer Modeling and Simulation, Brisbane, QLD, Australia, June 22-24, 2020
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1