An outlier detection method based on cluster pruning

R. Pamula, J. Deka, Sukumar Nandi
{"title":"An outlier detection method based on cluster pruning","authors":"R. Pamula, J. Deka, Sukumar Nandi","doi":"10.1109/ICBIM.2014.6970955","DOIUrl":null,"url":null,"abstract":"Outlier detection has a wide range of applications. In this paper we present a new method for detecting outliers, focused on reducing the number of computations. Our method operates on two phases and uses one pruning strategy. Objective is to remove the points which are considered to be inliers. In the first phase a clustering algorithm is applied to partition the data into clusters and make an estimate to prune the clusters, in the second phase we apply a outlier score function to dictate the outliers. The experimental results using real datasets demonstrate the superiority of our method over existing outlier detection method.","PeriodicalId":6549,"journal":{"name":"2014 2nd International Conference on Business and Information Management (ICBIM)","volume":"1 1","pages":"138-141"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 2nd International Conference on Business and Information Management (ICBIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBIM.2014.6970955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Outlier detection has a wide range of applications. In this paper we present a new method for detecting outliers, focused on reducing the number of computations. Our method operates on two phases and uses one pruning strategy. Objective is to remove the points which are considered to be inliers. In the first phase a clustering algorithm is applied to partition the data into clusters and make an estimate to prune the clusters, in the second phase we apply a outlier score function to dictate the outliers. The experimental results using real datasets demonstrate the superiority of our method over existing outlier detection method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于聚类修剪的离群点检测方法
异常值检测具有广泛的应用。在本文中,我们提出了一种新的检测异常值的方法,重点是减少计算量。我们的方法操作在两个阶段,并使用一个修剪策略。目的是去除被认为是内线的点。在第一阶段,应用聚类算法将数据划分为簇并进行估计以修剪簇,在第二阶段,我们应用离群值分数函数来指示离群值。实际数据集的实验结果表明,该方法优于现有的离群点检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel and Efficient Rough Set Based Clustering Technique for Gene Expression Data An empirical study on the determinants of capital structure in Indian Cement Industry in Pre and Post period of Recession Modified Ant Colony Optimization to enhance MANET routing in Adhoc on demand Distance Vector Feasibility of mobile based learning in higher education institutions in India A threshold based Directional Weighted Median Filter for Removal of Random Impulses in thermal images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1