Calibrating an area-detector diffractometer: integral response

David J. Thomas
{"title":"Calibrating an area-detector diffractometer: integral response","authors":"David J. Thomas","doi":"10.1098/rspa.1990.0030","DOIUrl":null,"url":null,"abstract":"The quality of diffraction data measured with electronic area-detectors is improved by correcting for non-uniformities in the response of the detector. Many detectors are actually much more uniform than they appear because much of the perceived non-uniformity is an artefact of the distortions in their imaging geometry and of the methods of illumination during calibration. Indeed, every known correction reduces the perceived non-uniformity. Our inability to illuminate the detector uniformly with radiation of the same wavelength as is used during data-collection is a particular worry because of differential absorption. The tails of the point-spread function also perturb the apparent response, particularly near to the edges of the imaging area. These problems are difficult to compensate, so there is no completely satisfactory method of determining the true response of real detectors. However, this does not prevent us from making calibrations of usable accuracy. Although this paper applies to all types of area-detector, the discussion is centred mainly on the ENRAF-NONIUS fast system, which is a commercially available television diffractometer, calibrated using software written by the present author. Calibrating the response of imaging detectors is a general problem, and many of the techniques expounded here are of wide applicability.","PeriodicalId":20605,"journal":{"name":"Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences","volume":"1 1","pages":"181 - 214"},"PeriodicalIF":0.0000,"publicationDate":"1990-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.1990.0030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The quality of diffraction data measured with electronic area-detectors is improved by correcting for non-uniformities in the response of the detector. Many detectors are actually much more uniform than they appear because much of the perceived non-uniformity is an artefact of the distortions in their imaging geometry and of the methods of illumination during calibration. Indeed, every known correction reduces the perceived non-uniformity. Our inability to illuminate the detector uniformly with radiation of the same wavelength as is used during data-collection is a particular worry because of differential absorption. The tails of the point-spread function also perturb the apparent response, particularly near to the edges of the imaging area. These problems are difficult to compensate, so there is no completely satisfactory method of determining the true response of real detectors. However, this does not prevent us from making calibrations of usable accuracy. Although this paper applies to all types of area-detector, the discussion is centred mainly on the ENRAF-NONIUS fast system, which is a commercially available television diffractometer, calibrated using software written by the present author. Calibrating the response of imaging detectors is a general problem, and many of the techniques expounded here are of wide applicability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
校准面积探测器衍射仪:积分响应
通过对探测器响应的不均匀性进行校正,提高了用电子面积探测器测量的衍射数据的质量。许多探测器实际上比它们看上去的要均匀得多,因为许多感知到的不均匀性是它们成像几何形状扭曲和校准期间照明方法的人工产物。事实上,每一个已知的修正都减少了感知到的不均匀性。由于差分吸收,我们无法用与数据收集期间使用的相同波长的辐射均匀地照亮探测器,这是一个特别令人担忧的问题。点扩散函数的尾部也会干扰视响应,特别是在成像区域边缘附近。这些问题很难补偿,因此没有完全令人满意的方法来确定实际探测器的真实响应。然而,这并不妨碍我们进行可用精度的校准。虽然本文适用于所有类型的区域探测器,但讨论主要集中在ENRAF-NONIUS快速系统上,这是一种商用电视衍射仪,使用本文作者编写的软件进行校准。校准成像探测器的响应是一个普遍的问题,这里阐述的许多技术具有广泛的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Some examples of Penrose’s quasi-local mass construction The influence of diffusion on the current-voltage curve in a flame ionization detector High strain-rate shear response of polycarbonate and polymethyl methacrylate On the evolution of plane detonations On the solutions of a class of dual integral equations occurring in diffraction problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1