A simulation-based comparative study of Cloud Datacenter scalability, robustness and complexity

M. F. Ali, O. Batarfi, A. Bashar
{"title":"A simulation-based comparative study of Cloud Datacenter scalability, robustness and complexity","authors":"M. F. Ali, O. Batarfi, A. Bashar","doi":"10.1109/INTELCIS.2015.7397275","DOIUrl":null,"url":null,"abstract":"This, paper presents a novel approach towards a comprehensive analysis of various simulation-based tools to test and measure the Cloud Datacenter performance, scalability, robustness and complexity. There are different Cloud Datacenter resources in cloud Computing Infrastructure like Virtual Machine, CPU, RAM, SAN, LAN and WAN topologies. The server machines need to be analyzed for their extent of utilization in terms of energy and service to clients in cloud computing. We have analyzed various Cloud resources using CloudSim, CloudReports and Cloud Analyst tools. Resources provisioning, Cloud Management, Load Balancing, Robustness and Cloud Scalability are the primary scope of work discuss in this paper. In this regards some Simulation test results and Simulations are presented in order to compare them with real time scenario to bring the performance and scalability issues into our notice for future directions.","PeriodicalId":6478,"journal":{"name":"2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS)","volume":"56 1","pages":"547-551"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTELCIS.2015.7397275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This, paper presents a novel approach towards a comprehensive analysis of various simulation-based tools to test and measure the Cloud Datacenter performance, scalability, robustness and complexity. There are different Cloud Datacenter resources in cloud Computing Infrastructure like Virtual Machine, CPU, RAM, SAN, LAN and WAN topologies. The server machines need to be analyzed for their extent of utilization in terms of energy and service to clients in cloud computing. We have analyzed various Cloud resources using CloudSim, CloudReports and Cloud Analyst tools. Resources provisioning, Cloud Management, Load Balancing, Robustness and Cloud Scalability are the primary scope of work discuss in this paper. In this regards some Simulation test results and Simulations are presented in order to compare them with real time scenario to bring the performance and scalability issues into our notice for future directions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于仿真的云数据中心可扩展性、鲁棒性和复杂性的比较研究
本文提出了一种新的方法,对各种基于仿真的工具进行全面分析,以测试和测量云数据中心的性能、可扩展性、鲁棒性和复杂性。在云计算基础设施中有不同的云数据中心资源,如虚拟机、CPU、RAM、SAN、LAN和WAN拓扑。需要分析服务器机器在云计算中对客户的能源和服务的利用程度。我们使用CloudSim、CloudReports和Cloud Analyst工具分析了各种云资源。资源供应、云管理、负载平衡、健壮性和云可扩展性是本文讨论的主要工作范围。在这方面,给出了一些仿真测试结果和仿真,以便将它们与实时场景进行比较,从而引起我们对性能和可扩展性问题的注意,以指导未来的发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the use of probabilistic model-checking for the verification of prognostics applications Prospective, knowledge based clinical risk analysis: The OPT-model Partial deduction in predicate calculus as a tool for artificial intelligence problem complexity decreasing XML summarization: A survey Finding the pin in the haystack: A Bot Traceback service for public clouds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1