Philippine License Plate Detection and Classification using Faster R-CNN and Feature Pyramid Network

Allysa Kate M. Brillantes, Ciprian D. Billones, Mari Christine E. Amon, C. Cero, John Anthony C. Jose, R. Billones, E. Dadios
{"title":"Philippine License Plate Detection and Classification using Faster R-CNN and Feature Pyramid Network","authors":"Allysa Kate M. Brillantes, Ciprian D. Billones, Mari Christine E. Amon, C. Cero, John Anthony C. Jose, R. Billones, E. Dadios","doi":"10.1109/HNICEM48295.2019.9072754","DOIUrl":null,"url":null,"abstract":"The advancement of image and video processing using Artificial Intelligence (AI) have brought more significance to the role of Automatic License Plate Recognition (ALPR) systems in law enforcement and intelligent transport systems (ITS). However, the adaptation of such a system in the Philippines has been a challenge due to the different variations of Philippine license plates. In this paper, a neural network-based model for the detection and classification of different Philippine license plate formats is proposed. The proposed method classifies license plates into four categories — 1981, 2003, 2014, and other series.","PeriodicalId":6733,"journal":{"name":"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )","volume":"1 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM48295.2019.9072754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The advancement of image and video processing using Artificial Intelligence (AI) have brought more significance to the role of Automatic License Plate Recognition (ALPR) systems in law enforcement and intelligent transport systems (ITS). However, the adaptation of such a system in the Philippines has been a challenge due to the different variations of Philippine license plates. In this paper, a neural network-based model for the detection and classification of different Philippine license plate formats is proposed. The proposed method classifies license plates into four categories — 1981, 2003, 2014, and other series.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于更快R-CNN和特征金字塔网络的菲律宾车牌检测与分类
人工智能(AI)图像和视频处理技术的进步,使车牌自动识别(ALPR)系统在执法和智能交通系统(ITS)中的作用变得更加重要。然而,由于菲律宾车牌的不同变化,这种系统在菲律宾的适应一直是一个挑战。本文提出了一种基于神经网络的菲律宾车牌格式检测与分类模型。该方法将车牌分为四类:1981年、2003年、2014年和其他系列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Innovations on Advanced Transportation Systems for Local Applications An Aquaculture-Based Binary Classifier for Fish Detection using Multilayer Artificial Neural Network Design and Analysis of Hip Joint DOFs for Lower Limb Robotic Exoskeleton Sum of Absolute Difference-based Rate-Distortion Optimization Cost Function for H.265/HEVC Intra-Mode Prediction Optimization and drying kinetics of the convective drying of microalgal biomat (lab-lab)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1